149 research outputs found

    Ease Virtual Machine Level Tooling with Language Level Ordinary Object Pointers

    Get PDF
    International audienceVirtual Machines (VMs) are critical language execution engines. When tooling the VM level, developers face an important abstraction gap. For instance, a VM supporting an Object-oriented Programming language often manipulates its memory using addresses whereas these addresses are hidden in the language this VM supports. This discourages tooling at the VM level. We propose to use language level object ordinary pointer (LLOOP) to reduce the abstraction gap. LLOOP combine VM level and language level knowledge at the VM level to ease VM tooling. We present our implementation on the Pharo language, which is supported by the Pharo VM. Moreover, we created two tools solving two real-world major bugs in the Pharo environment. These tools required VM level support. First, we investigate how to fix a meta error that was breaking a Pharo environment, preventing it to open. We repair the broken environment by tracking and fixing the language level method responsible for the error at the VM level. Second, we investigate a corrupted Pharo image. A few objects in the Pharo memory space were corrupted i.e., the VM was not able to read and manipulate them. We are able to identify and remove the corrupted objects, fixing the Pharo environment. CCS CONCEPTS • Software and its engineering → Runtime environments; Software maintenance tools; Software defect analysis

    Heap Fuzzing: Automatic Garbage Collection Testing with Expert-Guided Random Events

    Get PDF
    International audienceProducing robust memory manager implementations is a challenging task. Defects in garbage collection algorithms produce subtle effects that are revealed later in program execution as memory corruptions. This problem is exacerbated by the fact that garbage collection algorithms deal with low-level implementation details to be efficient. Finding, reproducing, and debugging such bugs is complex and time-consuming. In this article, we propose to fuzz heaps by generating large sequences of random heap events guided by virtual machine experts. Randomly generated events exercise the garbage collection algorithm with the objective of crashing the virtual machine and finding bugs. Once a bug is found, we use a test case reduction algorithm to find the smaller subset of events that reproduces the issue. We implemented our approach on top of the virtual machine simulator of the Pharo Virtual Machine, to test its sequential stopthe-world generational scavenger. Experts guided our fuzzing toward the ephemeron finalization mechanism, corner allocation cases, and the heap compaction algorithm. Our prototype found 6 bugs: 3 in Pharo's ephemeron implementation which is not yet in production, 2 bugs in the default compactor which has been in production for 8 years, and 1 bug in the VM simulator used daily by VM developers. We show how such test cases were automatically reduced to trivial sequences that were easy to debug

    Dynamic Binary Translation for Embedded Systems with Scratchpad Memory

    Get PDF
    Embedded software development has recently changed with advances in computing. Rather than fully co-designing software and hardware to perform a relatively simple task, nowadays embedded and mobile devices are designed as a platform where multiple applications can be run, new applications can be added, and existing applications can be updated. In this scenario, traditional constraints in embedded systems design (i.e., performance, memory and energy consumption and real-time guarantees) are more difficult to address. New concerns (e.g., security) have become important and increase software complexity as well. In general-purpose systems, Dynamic Binary Translation (DBT) has been used to address these issues with services such as Just-In-Time (JIT) compilation, dynamic optimization, virtualization, power management and code security. In embedded systems, however, DBT is not usually employed due to performance, memory and power overhead. This dissertation presents StrataX, a low-overhead DBT framework for embedded systems. StrataX addresses the challenges faced by DBT in embedded systems using novel techniques. To reduce DBT overhead, StrataX loads code from NAND-Flash storage and translates it into a Scratchpad Memory (SPM), a software-managed on-chip SRAM with limited capacity. SPM has similar access latency as a hardware cache, but consumes less power and chip area. StrataX manages SPM as a software instruction cache, and employs victim compression and pinning to reduce retranslation cost and capture frequently executed code in the SPM. To prevent performance loss due to excessive code expansion, StrataX minimizes the amount of code inserted by DBT to maintain control of program execution. When a hardware instruction cache is available, StrataX dynamically partitions translated code among the SPM and main memory. With these techniques, StrataX has low performance overhead relative to native execution for MiBench programs. Further, it simplifies embedded software and hardware design by operating transparently to applications without any special hardware support. StrataX achieves sufficiently low overhead to make it feasible to use DBT in embedded systems to address important design goals and requirements

    Supporting Concurrency Abstractions in High-level Language Virtual Machines

    Get PDF
    During the past decade, software developers widely adopted JVM and CLI as multi-language virtual machines (VMs). At the same time, the multicore revolution burdened developers with increasing complexity. Language implementers devised a wide range of concurrent and parallel programming concepts to address this complexity but struggle to build these concepts on top of common multi-language VMs. Missing support in these VMs leads to tradeoffs between implementation simplicity, correctly implemented language semantics, and performance guarantees. Departing from the traditional distinction between concurrency and parallelism, this dissertation finds that parallel programming concepts benefit from performance-related VM support, while concurrent programming concepts benefit from VM support that guarantees correct semantics in the presence of reflection, mutable state, and interaction with other languages and libraries. Focusing on these concurrent programming concepts, this dissertation finds that a VM needs to provide mechanisms for managed state, managed execution, ownership, and controlled enforcement. Based on these requirements, this dissertation proposes an ownership-based metaobject protocol (OMOP) to build novel multi-language VMs with proper concurrent programming support. This dissertation demonstrates the OMOP's benefits by building concurrent programming concepts such as agents, software transactional memory, actors, active objects, and communicating sequential processes on top of the OMOP. The performance evaluation shows that OMOP-based implementations of concurrent programming concepts can reach performance on par with that of their conventionally implemented counterparts if the OMOP is supported by the VM. To conclude, the OMOP proposed in this dissertation provides a unifying and minimal substrate to support concurrent programming on top of multi-language VMs. The OMOP enables language implementers to correctly implement language semantics, while simultaneously enabling VMs to provide efficient implementations

    Performant Software Hardening under Hardware Support

    Get PDF
    With a booming number of applications and end-users in the past decade, software security has been emphasized more than ever. Nonetheless, a consistent increase of security-critical bugs has been observed along the way, mainly due to the variety and complexity of existing software pieces. To mitigate the situation, software hardening in the daily development cycle typically involves three phases, including bug finding, runtime security enforcement, and fault analyses in case the prior steps have failed. Among the various software hardening techniques proposed, a considerable number of works have relied on available hardware support to achieve their goals. The reasons behind the noticeable trend are three-folded. First, the performance benefit from hardware can be substantial compared to a purely software-based solution. Second, compatibility and ease of use are also keys for more solutions to adopt hardware features besides the performance gain. Last, implementation with hardware support can consequentially present a smaller codebase, thus introducing less attack surface for attackers. In this dissertation, I present three hardware-assisted solutions for performant software hardening. The first one is PITTYPAT, a runtime enforcement for path-sensitive control-flow integrity. By utilizing Intel PT, it computes branch targets with points-to analyses in an efficient and precise manner. The second one is SNAP, a customized hardware platform that implements hardware primitives to enhance the performance of coverage-guided fuzzing. Given the program states originated from the existing CPU pipeline, our prototype on the FPGA platform enables a transparent support of fuzzing with near-zero tracing overhead. Finally, I will present a nested virtualization framework for fuzzing non-user applications, such as hypervisors. With a snapshot mechanism supported by the x86 virtualization extension and a customized kernel for fuzzing execution, our system demonstrates a 72x improvement on the fuzzing throughput compared to the prior solutions, and finds 14 zero-day bugs among the real-world hypervisors.Ph.D

    A visual object-oriented environment for LISP.

    Get PDF
    by Leong Hong Va.Thesis (M.Phil.)--Chinese University of Hong Kong, 1989.Bibliography: leaves 142-146

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances
    • …
    corecore