164 research outputs found

    Model Order Reduction for Gas and Energy Networks

    Get PDF
    To counter the volatile nature of renewable energy sources, gas networks take a vital role. But, to ensure fulfillment of contracts under these circumstances, a vast number of possible scenarios, incorporating uncertain supply and demand, has to be simulated ahead of time. This many-query gas network simulation task can be accelerated by model reduction, yet, large-scale, nonlinear, parametric, hyperbolic partial differential(-algebraic) equation systems, modeling natural gas transport, are a challenging application for model order reduction algorithms. For this industrial application, we bring together the scientific computing topics of: mathematical modeling of gas transport networks, numerical simulation of hyperbolic partial differential equation, and parametric model reduction for nonlinear systems. This research resulted in the "morgen" (Model Order Reduction for Gas and Energy Networks) software platform, which enables modular testing of various combinations of models, solvers, and model reduction methods. In this work we present the theoretical background on systemic modeling and structured, data-driven, system-theoretic model reduction for gas networks, as well as the implementation of "morgen" and associated numerical experiments testing model reduction adapted to gas network models

    Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms

    Get PDF

    Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators

    Full text link
    We present an estimator-based control design procedure for flow control, using reduced-order models of the governing equations, linearized about a possibly unstable steady state. The reduced models are obtained using an approximate balanced truncation method that retains the most controllable and observable modes of the system. The original method is valid only for stable linear systems, and we present an extension to unstable linear systems. The dynamics on the unstable subspace are represented by projecting the original equations onto the global unstable eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed, using approximate balanced truncation, for obtaining a reduced-order model of the dynamics on the stable subspace. The proposed algorithm is used to study feedback control of 2-D flow over a flat plate at a low Reynolds number and at large angles of attack, where the natural flow is vortex shedding, though there also exists an unstable steady state. For control design, we derive reduced-order models valid in the neighborhood of this unstable steady state. The actuation is modeled as a localized body force near the leading edge of the flat plate, and the sensors are two velocity measurements in the near-wake of the plate. A reduced-order Kalman filter is developed based on these models and is shown to accurately reconstruct the flow field from the sensor measurements, and the resulting estimator-based control is shown to stabilize the unstable steady state. For small perturbations of the steady state, the model accurately predicts the response of the full simulation. Furthermore, the resulting controller is even able to suppress the stable periodic vortex shedding, where the nonlinear effects are strong, thus implying a large domain of attraction of the stabilized steady state.Comment: 36 pages, 17 figure

    Model reduction of controlled Fokker--Planck and Liouville-von Neumann equations

    Full text link
    Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples

    A Goal-Oriented Dual LRCF-ADI for Balanced Truncation

    Get PDF

    Projection-free approximate balanced truncation of large unstable systems

    Get PDF
    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive
    • …
    corecore