51,889 research outputs found

    Domain Adaptation Extreme Learning Machines for Drift Compensation in E-nose Systems

    Full text link
    This paper addresses an important issue, known as sensor drift that behaves a nonlinear dynamic property in electronic nose (E-nose), from the viewpoint of machine learning. Traditional methods for drift compensation are laborious and costly due to the frequent acquisition and labeling process for gases samples recalibration. Extreme learning machines (ELMs) have been confirmed to be efficient and effective learning techniques for pattern recognition and regression. However, ELMs primarily focus on the supervised, semi-supervised and unsupervised learning problems in single domain (i.e. source domain). To our best knowledge, ELM with cross-domain learning capability has never been studied. This paper proposes a unified framework, referred to as Domain Adaptation Extreme Learning Machine (DAELM), which learns a robust classifier by leveraging a limited number of labeled data from target domain for drift compensation as well as gases recognition in E-nose systems, without loss of the computational efficiency and learning ability of traditional ELM. In the unified framework, two algorithms called DAELM-S and DAELM-T are proposed for the purpose of this paper, respectively. In order to percept the differences among ELM, DAELM-S and DAELM-T, two remarks are provided. Experiments on the popular sensor drift data with multiple batches collected by E-nose system clearly demonstrate that the proposed DAELM significantly outperforms existing drift compensation methods without cumbersome measures, and also bring new perspectives for ELM.Comment: 11 pages, 9 figures, to appear in IEEE Transactions on Instrumentation and Measuremen

    Culture and E-Learning: Automatic Detection of a Users’ Culture from Survey Data

    Get PDF
    Knowledge about the culture of a user is especially important for the design of e-learning applications. In the experiment reported here, questionnaire data was used to build machine learning models to automatically predict the culture of a user. This work can be applied to automatic culture detection and subsequently to the adaptation of user interfaces in e-learning
    corecore