28,851 research outputs found

    Bank distress in the news: Describing events through deep learning

    Full text link
    While many models are purposed for detecting the occurrence of significant events in financial systems, the task of providing qualitative detail on the developments is not usually as well automated. We present a deep learning approach for detecting relevant discussion in text and extracting natural language descriptions of events. Supervised by only a small set of event information, comprising entity names and dates, the model is leveraged by unsupervised learning of semantic vector representations on extensive text data. We demonstrate applicability to the study of financial risk based on news (6.6M articles), particularly bank distress and government interventions (243 events), where indices can signal the level of bank-stress-related reporting at the entity level, or aggregated at national or European level, while being coupled with explanations. Thus, we exemplify how text, as timely, widely available and descriptive data, can serve as a useful complementary source of information for financial and systemic risk analytics.Comment: Forthcoming in Neurocomputing. arXiv admin note: substantial text overlap with arXiv:1507.07870 [in version 1

    Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets

    Full text link
    In today's increasingly international economy, return and volatility spillover effects across international equity markets are major macroeconomic drivers of stock dynamics. Thus, information regarding foreign markets is one of the most important factors in forecasting domestic stock prices. However, the cross-correlation between domestic and foreign markets is highly complex. Hence, it is extremely difficult to explicitly express this cross-correlation with a dynamical equation. In this study, we develop stock return prediction models that can jointly consider international markets, using multimodal deep learning. Our contributions are three-fold: (1) we visualize the transfer information between South Korea and US stock markets by using scatter plots; (2) we incorporate the information into the stock prediction models with the help of multimodal deep learning; (3) we conclusively demonstrate that the early and intermediate fusion models achieve a significant performance boost in comparison with the late fusion and single modality models. Our study indicates that jointly considering international stock markets can improve the prediction accuracy and deep neural networks are highly effective for such tasks

    Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach

    Full text link
    Accurate time-series forecasting is vital for numerous areas of application such as transportation, energy, finance, economics, etc. However, while modern techniques are able to explore large sets of temporal data to build forecasting models, they typically neglect valuable information that is often available under the form of unstructured text. Although this data is in a radically different format, it often contains contextual explanations for many of the patterns that are observed in the temporal data. In this paper, we propose two deep learning architectures that leverage word embeddings, convolutional layers and attention mechanisms for combining text information with time-series data. We apply these approaches for the problem of taxi demand forecasting in event areas. Using publicly available taxi data from New York, we empirically show that by fusing these two complementary cross-modal sources of information, the proposed models are able to significantly reduce the error in the forecasts.Comment: 20 pages, 6 figure

    Econometrics meets sentiment : an overview of methodology and applications

    Get PDF
    The advent of massive amounts of textual, audio, and visual data has spurred the development of econometric methodology to transform qualitative sentiment data into quantitative sentiment variables, and to use those variables in an econometric analysis of the relationships between sentiment and other variables. We survey this emerging research field and refer to it as sentometrics, which is a portmanteau of sentiment and econometrics. We provide a synthesis of the relevant methodological approaches, illustrate with empirical results, and discuss useful software

    Pricing options and computing implied volatilities using neural networks

    Full text link
    This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an optimized ANN on a data set generated by a sophisticated financial model, and runs the trained ANN as an agent of the original solver in a fast and efficient way. We test this approach on three different types of solvers, including the analytic solution for the Black-Scholes equation, the COS method for the Heston stochastic volatility model and Brent's iterative root-finding method for the calculation of implied volatilities. The numerical results show that the ANN solver can reduce the computing time significantly

    Long-term stock index forecasting based on text mining of regulatory disclosures

    Full text link
    Share valuations are known to adjust to new information entering the market, such as regulatory disclosures. We study whether the language of such news items can improve short-term and especially long-term (24 months) forecasts of stock indices. For this purpose, this work utilizes predictive models suited to high-dimensional data and specifically compares techniques for data-driven and knowledge-driven dimensionality reduction in order to avoid overfitting. Our experiments, based on 75,927 ad hoc announcements from 1996-2016, reveal the following results: in the long run, text-based models succeed in reducing forecast errors below baseline predictions from historic lags at a statistically significant level. Our research provides implications to business applications of decision-support in financial markets, especially given the growing prevalence of index ETFs (exchange traded funds).Comment: Accepted at Decision Support Systems journa

    Reinforcement Evolutionary Learning Method for self-learning

    Full text link
    In statistical modelling the biggest threat is concept drift which makes the model gradually showing deteriorating performance over time. There are state of the art methodologies to detect the impact of concept drift, however general strategy considered to overcome the issue in performance is to rebuild or re-calibrate the model periodically as the variable patterns for the model changes significantly due to market change or consumer behavior change etc. Quantitative research is the most widely spread application of data science in Marketing or financial domain where applicability of state of the art reinforcement learning for auto-learning is less explored paradigm. Reinforcement learning is heavily dependent on having a simulated environment which is majorly available for gaming or online systems, to learn from the live feedback. However, there are some research happened on the area of online advertisement, pricing etc where due to the nature of the online learning environment scope of reinforcement learning is explored. Our proposed solution is a reinforcement learning based, true self-learning algorithm which can adapt to the data change or concept drift and auto learn and self-calibrate for the new patterns of the data solving the problem of concept drift. Keywords - Reinforcement learning, Genetic Algorithm, Q-learning, Classification modelling, CMA-ES, NES, Multi objective optimization, Concept drift, Population stability index, Incremental learning, F1-measure, Predictive Modelling, Self-learning, MCTS, AlphaGo, AlphaZeroComment: 5 figure

    A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem

    Full text link
    Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.Comment: 30 pages, 5 figures, submitting to JML

    Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA Computations

    Full text link
    Modeling counterparty risk is computationally challenging because it requires the simultaneous evaluation of all the trades with each counterparty under both market and credit risk. We present a multi-Gaussian process regression approach, which is well suited for OTC derivative portfolio valuation involved in CVA computation. Our approach avoids nested simulation or simulation and regression of cash flows by learning a Gaussian metamodel for the mark-to-market cube of a derivative portfolio. We model the joint posterior of the derivatives as a Gaussian process over function space, with the spatial covariance structure imposed on the risk factors. Monte-Carlo simulation is then used to simulate the dynamics of the risk factors. The uncertainty in portfolio valuation arising from the Gaussian process approximation is quantified numerically. Numerical experiments demonstrate the accuracy and convergence properties of our approach for CVA computations, including a counterparty portfolio of interest rate swaps.Comment: 36 pages, 16 figure

    Model-Driven Analytics: Connecting Data, Domain Knowledge, and Learning

    Full text link
    Gaining profound insights from collected data of today's application domains like IoT, cyber-physical systems, health care, or the financial sector is business-critical and can create the next multi-billion dollar market. However, analyzing these data and turning it into valuable insights is a huge challenge. This is often not alone due to the large volume of data but due to an incredibly high domain complexity, which makes it necessary to combine various extrapolation and prediction methods to understand the collected data. Model-driven analytics is a refinement process of raw data driven by a model reflecting deep domain understanding, connecting data, domain knowledge, and learning
    • …
    corecore