553 research outputs found

    Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood

    Full text link
    We consider the problem of discriminative factor analysis for data that are in general non-Gaussian. A Bayesian model based on the ranks of the data is proposed. We first introduce a new {\em max-margin} version of the rank-likelihood. A discriminative factor model is then developed, integrating the max-margin rank-likelihood and (linear) Bayesian support vector machines, which are also built on the max-margin principle. The discriminative factor model is further extended to the {\em nonlinear} case through mixtures of local linear classifiers, via Dirichlet processes. Fully local conjugacy of the model yields efficient inference with both Markov Chain Monte Carlo and variational Bayes approaches. Extensive experiments on benchmark and real data demonstrate superior performance of the proposed model and its potential for applications in computational biology.Comment: 14 pages, 7 figures, ICML 201

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    Full text link
    Probabilistic graphical models are a central tool in AI; however, they are generally not as expressive as deep neural models, and inference is notoriously hard and slow. In contrast, deep probabilistic models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion, but still lack the expressive power of intractable models based on deep neural networks. Therefore, we introduce conditional SPNs (CSPNs), conditional density estimators for multivariate and potentially hybrid domains which allow harnessing the expressive power of neural networks while still maintaining tractability guarantees. One way to implement CSPNs is to use an existing SPN structure and condition its parameters on the input, e.g., via a deep neural network. This approach, however, might misrepresent the conditional independence structure present in data. Consequently, we also develop a structure-learning approach that derives both the structure and parameters of CSPNs from data. Our experimental evidence demonstrates that CSPNs are competitive with other probabilistic models and yield superior performance on multilabel image classification compared to mean field and mixture density networks. Furthermore, they can successfully be employed as building blocks for structured probabilistic models, such as autoregressive image models.Comment: 13 pages, 6 figure
    • …
    corecore