52,301 research outputs found

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    Science Concierge: A fast content-based recommendation system for scientific publications

    Full text link
    Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate.Comment: 12 pages, 5 figure
    • …
    corecore