902 research outputs found

    Objective methods for reliable detection of concealed depression

    Get PDF
    Recent research has shown that it is possible to automatically detect clinical depression from audio-visual recordings. Before considering integration in a clinical pathway, a key question that must be asked is whether such systems can be easily fooled. This work explores the potential of acoustic features to detect clinical depression in adults both when acting normally and when asked to conceal their depression. Nine adults diagnosed with mild to moderate depression as per the Beck Depression Inventory (BDI-II) and Patient Health Questionnaire (PHQ-9) were asked a series of questions and to read a excerpt from a novel aloud under two different experimental conditions. In one, participants were asked to act naturally and in the other, to suppress anything that they felt would be indicative of their depression. Acoustic features were then extracted from this data and analysed using paired t-tests to determine any statistically significant differences between healthy and depressed participants. Most features that were found to be significantly different during normal behaviour remained so during concealed behaviour. In leave-one-subject-out automatic classification studies of the 9 depressed subjects and 8 matched healthy controls, an 88% classification accuracy and 89% sensitivity was achieved. Results remained relatively robust during concealed behaviour, with classifiers trained on only non-concealed data achieving 81% detection accuracy and 75% sensitivity when tested on concealed data. These results indicate there is good potential to build deception-proof automatic depression monitoring systems

    Multimodal Approach for Assessing Neuromotor Coordination in Schizophrenia Using Convolutional Neural Networks

    Full text link
    This study investigates the speech articulatory coordination in schizophrenia subjects exhibiting strong positive symptoms (e.g. hallucinations and delusions), using two distinct channel-delay correlation methods. We show that the schizophrenic subjects with strong positive symptoms and who are markedly ill pose complex articulatory coordination pattern in facial and speech gestures than what is observed in healthy subjects. This distinction in speech coordination pattern is used to train a multimodal convolutional neural network (CNN) which uses video and audio data during speech to distinguish schizophrenic patients with strong positive symptoms from healthy subjects. We also show that the vocal tract variables (TVs) which correspond to place of articulation and glottal source outperform the Mel-frequency Cepstral Coefficients (MFCCs) when fused with Facial Action Units (FAUs) in the proposed multimodal network. For the clinical dataset we collected, our best performing multimodal network improves the mean F1 score for detecting schizophrenia by around 18% with respect to the full vocal tract coordination (FVTC) baseline method implemented with fusing FAUs and MFCCs.Comment: 5 pages. arXiv admin note: text overlap with arXiv:2102.0705

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    Processing of nonverbal vocalisations in dementia

    Get PDF
    Nonverbal emotional vocalisations are fundamental communicative signals used to convey a diverse repertoire of social and emotional information. They transcend the boundaries of language and cultural specificity that hamper many neuropsychological tests, making them ideal candidates for understanding impaired socio-emotional signal processing in dementia. Symptoms related to changes in social behaviour and emotional responsiveness are poorly understood yet have significant impact on patients with dementia and those who care for them. In this thesis, I investigated processing of nonverbal emotional vocalisations in patients with Alzheimer’s disease and frontotemporal dementia (FTD), a disease spectrum encompassing three canonical syndromes characterised by marked socio-emotional and communication difficulties - behavioural variant FTD (bvFTD), semantic variant primary progressive aphasia (svPPA) and nonfluent/agrammatic variant primary progressive aphasia (nfvPPA). I demonstrated distinct profiles of impairment in identifying three salient vocalisations (laughter, crying and screaming) and the emotions they convey. All three FTD syndromes showed impairments, with the most marked deficits of emotion categorisation seen in the bvFTD group. Voxel-based morphometry was used to define critical brain substrates for processing vocalisations, identifying correlates of vocal sound processing with auditory perceptual regions (superior temporal sulcus and posterior insula) and emotion identification with limbic and medial frontal regions. The second half of this thesis focused on the more fine-grained distinction of laughter subtypes. I studied cognitive (labelling), affective (valence) and autonomic (pupillometric) processing of laughter subtypes representing dimensions of valence (mirthful versus hostile) and arousal (spontaneous versus posed). Again, FTD groups showed greatest impairment with profiles suggestive of primary perceptual deficits in nfvPPA, cognitive overgeneralisation in svPPA and disordered reward and hedonic valuation in bvFTD. Neuroanatomical correlates of explicit laughter identification included inferior frontal and cingulo-insular cortices whilst implicit processing (indexed as autonomic arousal) was particularly impaired in those conditions associated with insular compromise (nfvPPA and bvFTD). These findings demonstrate the potential of nonverbal emotional vocalisations as a probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative diseases
    • …
    corecore