45 research outputs found

    RapidScat winds from the OSI SAF

    Get PDF
    2015 EUMETSAT Meteorological Satellite Conference, 21-25 September 2015, Toulouse.-- 1 page, 2 figures, 3 tablesThe RapidScat scatterometer instrument is a speedy and cost-effective replacement for the National Aeronautics and Space Administration (NASA) QuikSCAT satellite, which provided a decade-long ocean vector wind observations. RapidScat was launched on 20 September 2014 and mounted on the International Space Station (ISS). The use of generic algorithms for Ku-band scatterometer wind processing allowed us to develop a good quality wind product in a very short time. The wind products with development status are available to users since early December 2014, only one month after the level 2a data became available. Operational status was achieved in March 2015. The good quality of the winds is confirmed by comparisons of RapidScat with NWP, buoy and ASCAT windsPeer Reviewe

    ERAstar: A high-resolution ocean forcing product

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksTo address the growing demand for accurate high-resolution ocean wind forcing from the ocean modeling community, we develop a new forcing product, ERA*, by means of a geolocated scatterometer-based correction applied to the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis or ERA-interim (hereafter referred to as ERAi). This method successfully corrects for local wind vector biases present in the ERAi output globally. Several configurations of the ERA* are tested using complementary scatterometer data [advanced scatterometer (ASCAT)-A/B and oceansat-2 scatterometer (OSCAT)] accumulated over different temporal windows, verified against independent scatterometer data [HY-2A scatterometer (HSCAT)], and evaluated through spectral analysis to assess the geophysical consistency of the new stress equivalent wind fields (U10S). Due to the high quality of the scatterometer U10S, ERA* contains some of the physical processes missing or misrepresented in ERAi. Although the method is highly dependent on sampling, it shows potential, notably in the tropics. Short temporal windows are preferred, to avoid oversmoothing of the U10S fields. Thus, corrections based on increased scatterometer sampling (use of multiple scatterometers) are required to capture the detailed forcing errors. When verified against HSCAT, the ERA* configurations based on multiple scatterometers reduce the vector root-mean-square difference about 10% with respect to that of ERAi. ERA* also shows a significant increase in small-scale true wind variability, observed in the U10S spectral slopes. In particular, the ERA* spectral slopes consistently lay between those of HSCAT and ERAi, but closer to HSCAT, suggesting that ERA* effectively adds spatial scales of about 50 km, substantially smaller than those resolved by global numerical weather prediction (NWP) output over the open ocean (about 150 km).Peer ReviewedPostprint (author's final draft

    Unique Offerings of the ISS as an Earth Observing Platform

    Get PDF
    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow

    Buoy perspective of a high-resolution global ocean vector wind analysis constructed from passive radiometers and active scatterometers (1987–present)

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C11013, doi:10.1029/2012JC008069.The study used 126 buoy time series as a benchmark to evaluate a satellite-based daily, 0.25-degree gridded global ocean surface vector wind analysis developed by the Objectively Analyzed airs-sea Fluxes (OAFlux) project. The OAFlux winds were produced from synthesizing wind speed and direction retrievals from 12 sensors acquired during the satellite era from July 1987 onward. The 12 sensors included scatterometers (QuikSCAT and ASCAT), passive microwave radiometers (AMSRE, SSMI and SSMIS series), and the passive polarimetric microwave radiometer from WindSat. Accuracy and consistency of the OAFlux time series are the key issues examined here. A total of 168,836 daily buoy measurements were assembled from 126 buoys, including both active and archive sites deployed during 1988–2010. With 106 buoys from the tropical array network, the buoy winds are a good reference for wind speeds in low and mid-range. The buoy comparison shows that OAFlux wind speed has a mean difference of −0.13 ms−1 and an RMS difference of 0.71 ms−1, and wind direction has a mean difference of −0.55 degree and an RMS difference of 17 degrees. Vector correlation of OAFlux and buoy winds is of 0.9 and higher over almost all the sites. Influence of surface currents on the OAFlux/buoy mean difference pattern is displayed in the tropical Pacific, with higher (lower) OAFlux wind speed in regions where wind and current have the opposite (same) sign. Improved representation of daily wind variability by the OAFlux synthesis is suggested, and a decadal signal in global wind speed is evident.The authors are grateful for the support of the NASA Ocean Vector Wind Science Team (OVWST) under grant NNA10AO86G during the five-year development of the OAFlux wind synthesis products. Support from the NOAA Office of Climate Observation (OCO) under grant NA09OAR4320129 in establishing and maintaining the buoy validation database for surface fluxes is gratefully acknowledged.2013-05-1

    Second-order structure function analysis of scatterometer winds over the Tropical Pacific

    Get PDF
    22 pages, 16 figures, 1 tableKolmogorov second-order structure functions are used to quantify and compare the small-scale information contained in near-surface ocean wind products derived from measurements by ASCAT on MetOp-A and SeaWinds on QuikSCAT. Two ASCAT and three SeaWinds products are compared in nine regions (classified as rainy or dry) in the tropical Pacific between 10°S and 10°N and 140° and 260°E for the period November 2008 to October 2009. Monthly and regionally averaged longitudinal and transverse structure functions are calculated using along-track samples. To ease the analysis, the following quantities were estimated for the scale range 50 to 300 km and used to intercompare the wind products: (i) structure function slopes, (ii) turbulent kinetic energies (TKE), and (iii) vorticity-to-divergence ratios. All wind products are in good qualitative agreement, but also have important differences. Structure function slopes and TKE differ per wind product, but also show a common variation over time and space. Independent of wind product, longitudinal slopes decrease when sea surface temperature exceeds the threshold for onset of deep convection (about 28°C). In rainy areas and in dry regions during rainy periods, ASCAT has larger divergent TKE than SeaWinds, while SeaWinds has larger vortical TKE than ASCAT. Differences between SeaWinds and ASCAT vortical TKE and vorticity-to-divergence ratios for the convectively active months of each region are large. © 2014. American Geophysical Union. All Rights ReservedThe ASCAT-12.5 and ASCAT-25 data used in this work can be ordered online from the EUMETSAT Data Centre (www.eumetsat.int) as SAF type data in BUFR or NetCDF format. They can also be ordered from PO.DAAC (podaac.jpl.nasa.gov) in NetCDF format only. The SeaWinds-NOAA and QuikSCAT-12.5 data are also available from PO.DAAC. The SeaWinds-KNMI data are available from the KNMI archive upon an email request to [email protected]. Rain-rates and sea surface temperatures were obtained from the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) archive at the Remote Sensing Systems web site (www.ssmi.com). SeaWinds Radiometer (SRAD) rain-rates were obtained from the QuikSCAT 25 km L2B science data product that is available from PO.DAAC. This work has been funded by EUMETSAT in the context of the Numerical Weather Prediction Satellite Applications Facility (NWP SAF). The contribution of GPK has been supported by EUMETSAT as part of the SAF Visiting Scientists programmePeer Reviewe

    Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward)

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 5244–5269, doi:10.1002/2013JC009648.A high-resolution global daily analysis of ocean surface vector winds (1987 onward) was developed by the Objectively Analyzed air-sea Fluxes (OAFlux) project. This study addressed the issues related to the development of the time series through objective synthesis of 12 satellite sensors (two scatterometers and 10 passive microwave radiometers) using a least-variance linear statistical estimation. The issues include the rationale that supports the multisensor synthesis, the methodology and strategy that were developed, the challenges that were encountered, and the comparison of the synthesized daily mean fields with reference to scatterometers and atmospheric reanalyses. The synthesis was established on the bases that the low and moderate winds (<15 m s−1) constitute 98% of global daily wind fields, and they are the range of winds that are retrieved with best quality and consistency by both scatterometers and radiometers. Yet, challenges are presented in situations of synoptic weather systems due mainly to three factors: (i) the lack of radiometer retrievals in rain conditions, (ii) the inability to fill in the data voids caused by eliminating rain-flagged QuikSCAT wind vector cells, and (iii) the persistent differences between QuikSCAT and ASCAT high winds. The study showed that the daily mean surface winds can be confidently constructed from merging scatterometers with radiometers over the global oceans, except for the regions influenced by synoptic weather storms. The uncertainties in present scatterometer and radiometer observations under high winds and rain conditions lead to uncertainties in the synthesized synoptic structures.The project is sponsored by the NASA Ocean Vector Wind Science Team (OVWST) activities under grant NNA10AO86G.2015-02-1

    Open access data in polar and cryospheric remote sensing

    Get PDF
    This paper aims to introduce the main types and sources of remotely sensed data that are freely available and have cryospheric applications. We describe aerial and satellite photography, satellite-borne visible, near-infrared and thermal infrared sensors, synthetic aperture radar, passive microwave imagers and active microwave scatterometers. We consider the availability and practical utility of archival data, dating back in some cases to the 1920s for aerial photography and the 1960s for satellite imagery, the data that are being collected today and the prospects for future data collection; in all cases, with a focus on data that are openly accessible. Derived data products are increasingly available, and we give examples of such products of particular value in polar and cryospheric research. We also discuss the availability and applicability of free and, where possible, open-source software tools for reading and processing remotely sensed data. The paper concludes with a discussion of open data access within polar and cryospheric sciences, considering trends in data discoverability, access, sharing and use.A. Pope would like to acknowledge support from the Earth Observation Technology Cluster, a knowledge exchange project, funded by the Natural Environment Research Council (NERC) under its Technology Clusters Programme, the U.S. National Science Foundation Graduate Research Fellowship Program, Trinity College (Cambridge) and the Dartmouth Visiting Young Scientist program sponsored by the NASA New Hampshire Space Grant.This is the final published version. It's also available from MDPI at http://www.mdpi.com/2072-4292/6/7/6183

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table

    Emerging pattern of wind change over the Eurasian marginal seas revealed by three decades of satellite ocean-surface wind observations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yu, L. Emerging pattern of wind change over the Eurasian marginal seas revealed by three decades of satellite ocean-surface wind observations. Remote Sensing, 13(9), (2021):1707, https://doi.org/10.3390/rs13091707.This study provides the first full characterization of decadal changes of surface winds over 10 marginal seas along the Eurasian continent using satellite wind observations. During the three decades (1988–2018), surface warming has occurred in all seas at a rate more pronounced in the South European marginal seas (0.4–0.6 °C per decade) than in the monsoon-influenced North Indian and East Asian marginal seas (0.1–0.2 °C per decade). However, surface winds have not strengthened everywhere. On a basin average, winds have increased over the marginal seas in the subtropical/mid-latitudes, with the rate of increase ranging from 11 to 24 cms−1 per decade. These upward trends reflect primarily the accelerated changes in the 1990s and have largely flattened since 2000. Winds have slightly weakened or remained little changed over the marginal seas in the tropical monsoonal region. Winds over the Red Sea and the Persian Gulf underwent an abrupt shift in the late 1990s that resulted in an elevation of local wind speeds. The varying relationships between wind and SST changes suggest that different marginal seas have responded differently to environmental warming and further studies are needed to gain an improved understanding of climate change on a regional scale.This research was funded by NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, grant number 80NSSC18M0079, NASA Ocean Vector Wind Science Team (OVWST) program, grant number NNX14AL82G, and NOAA Global Ocean Monitoring and Observation (GOMO) Program, grand number NA19OAR4320074

    An overview of offshore wind energy resources in Europe under present and future climate

    Get PDF
    Long-term sustainable development of European offshore wind energy requires knowledge of the best places for installing offshore wind farms. To achieve this, a good knowledge of wind resources is needed, as well as knowledge of international, European, and national regulations regarding conflict management, marine environment conservation, biodiversity protection, licensing processes, and support regimes. Such a multidisciplinary approach could help to identify areas where wind resources are abundant and where conflicts with other interests are scarce, support measures are greater, and licensing processes are streamlined. An overview of offshore wind power studies at present, and of their future projections for the 21st century, allows for determining the optimal European locations to install or maintain offshore wind farms. Only northern Europe, the northwest portion of the Iberian Peninsula, the Gulf of Lyon, the Strait of Gibraltar, and the northwest coast of Turkey show no change or increase in wind power, revealing these locations as the most suitable for installing and maintaining offshore wind farms in the future. The installation of wind farms is subject to restrictions established under international law, European law, and the domestic legal framework of each EU member state. Europe is moving toward streamlining of licensing procedures, reducing subsidies, and implementing auction systems.Xunta de Galicia | Ref. ED431C 2017/64Xunta de Galicia | Ref. ED481A-2016/36Fundação para a Ciência e a Tecnologia | Ref. SFRH/BPD/118142/20
    corecore