2,806 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Multipath Routing over Wireless Mesh Networks

    Get PDF
    Master'sMASTER OF SCIENC

    Performance Evaluation of Video Streaming in an Infrastructure Mesh Based Vehicle Network

    Get PDF
    Most next-generation wireless networks are expected to support video stream- ing which constitutes the bulk of traffic on the Internet. This thesis evaluates the performance of video streaming in a vehicle network with an infrastructure wireless mesh network (WMN) backhaul. Several studies have investigated video quality per- formance primarily in single hop wireless networks and static WMNs. This thesis is based on those studies and conducts the study in relation to a network where the multi-hop features of the mesh network and mobility of the streaming clients may have substantial impact on the perceived video quality in the network. The study assumes a previously proposed vehicle network architecture con- sisting of an infrastructure WMN that serves as the mesh backhaul [2, 3]. A number of mesh routers (MRs) form the mesh backhaul using one of their two IEEE 802.11g radios whereas the other radio is used to communicate with the fast moving mesh clients (MCs). Selective MRs called mesh gateways (MGs) are connected to a wired network (e.g., the Internet, hereafter referred to as the core network) via a point-to- point link and provide gateway connectivity to the rest of the network. A server on the core network acts as a video server and streams individual video streams to the fast moving MCs. Upon deployment, network discovery occurs and segregates the network into a number of separate routing zones with each routing zone consisting of a single MG and all the MRs that use the MG as their gateway. A minimum-hop based routing protocol is used to enable seamless handover of MCs from one MR to another within a single zone. Simulation studies in this thesis inspects the network and video streaming performance within a single routing zone, assuming the handoff and inter-zone routing being taken care of by the routing protocol and only focus on the intra-zone packet forwarding and scheduling impacts. Hence, this study does not address cases where MCs move from one routing zone to another routing zone in the mobile network. In the first part of the study, we evaluate the performance of video streaming in the described network by studying performance metrics across different layers of the protocol stack. The number of video flows that can be supported by the network is experimentally determined for each scenario. In the second part, the thesis studies controllable network and protocol parameters\u27 ability to improve the network and video quality performance. Simulations are run in an integrated framework that includes network-simulator ns-2, NS-MIRACLE, and Evalvid
    corecore