21,533 research outputs found

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    A General Large Neighborhood Search Framework for Solving Integer Programs

    Get PDF
    This paper studies how to design abstractions of large-scale combinatorial optimization problems that can leverage existing state-of-the-art solvers in general purpose ways, and that are amenable to data-driven design. The goal is to arrive at new approaches that can reliably outperform existing solvers in wall-clock time. We focus on solving integer programs, and ground our approach in the large neighborhood search (LNS) paradigm, which iteratively chooses a subset of variables to optimize while leaving the remainder fixed. The appeal of LNS is that it can easily use any existing solver as a subroutine, and thus can inherit the benefits of carefully engineered heuristic approaches and their software implementations. We also show that one can learn a good neighborhood selector from training data. Through an extensive empirical validation, we demonstrate that our LNS framework can significantly outperform, in wall-clock time, compared to state-of-the-art commercial solvers such as Gurobi

    The subdivision of large simplicial cones in Normaliz

    Full text link
    Normaliz is an open-source software for the computation of lattice points in rational polyhedra, or, in a different language, the solutions of linear diophantine systems. The two main computational goals are (i) finding a system of generators of the set of lattice points and (ii) counting elements degree-wise in a generating function, the Hilbert Series. In the homogeneous case, in which the polyhedron is a cone, the set of generators is the Hilbert basis of the intersection of the cone and the lattice, an affine monoid. We will present some improvements to the Normaliz algorithm by subdividing simplicial cones with huge volumes. In the first approach the subdivision points are found by integer programming techniques. For this purpose we interface to the integer programming solver SCIP to our software. In the second approach we try to find good subdivision points in an approximating overcone that is faster to compute.Comment: To appear in the proceedings of the ICMS 2016, published by Springer as Volume 9725 of Lecture Notes in Computer Science (LNCS

    A primal Barvinok algorithm based on irrational decompositions

    Full text link
    We introduce variants of Barvinok's algorithm for counting lattice points in polyhedra. The new algorithms are based on irrational signed decomposition in the primal space and the construction of rational generating functions for cones with low index. We give computational results that show that the new algorithms are faster than the existing algorithms by a large factor.Comment: v3: New all-primal algorithm. v4: Extended introduction, updated computational results. To appear in SIAM Journal on Discrete Mathematic
    • …
    corecore