1,635,867 research outputs found

    Top-Quark Production and Decay in the MSSM

    Get PDF
    We review the features of top-quark decays and loop-induced effects in the production cross section and CP-violating observables of e+e- -> t t-bar which are specific to the R-parity conserving Minimal Supersymmetric Standard Model (MSSM).Comment: LaTeX, 28 pages, 10 figures included, uses cite.sty. Contribution to the proceedings of the 2nd Joint ECFA/DESY Workshop on Physics and Detectors for a Linear Electron-Positron Collider. References adde

    High-precision determination of the electric and magnetic form factors of the proton

    Get PDF
    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.Comment: 5 pages, 2 figures, published in Phys. Rev. Lett. v3: added references, updated text, color figure

    The Direct Detection of Boosted Dark Matter at High Energies and PeV events at IceCube

    Full text link
    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ\chi, created via the decay of a significantly more massive and long-lived non-thermal relic ϕ\phi, which forms the bulk of DM. If χ\chi interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 121-2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.Comment: v1: 6 pages, 4 figures; v2: More references added, minor text changes for clarification; v3: Title change, major revision, updated references; v4: Corrected Fig. 1b, Version published in JCA

    The Elliptic Double-Box Integral: Massless Amplitudes Beyond Polylogarithms

    Get PDF
    We derive an analytic representation of the ten-particle, two-loop double-box integral as an elliptic integral over weight-three polylogarithms. To obtain this form, we first derive a four-fold, rational (Feynman-)parametric representation for the integral, expressed directly in terms of dual-conformally invariant cross-ratios; from this, the desired form is easily obtained. The essential features of this integral are illustrated by means of a simplified toy model, and we attach the relevant expressions for both integrals in ancillary files. We propose a normalization for such integrals that renders all of their polylogarithmic degenerations pure, and we discuss the need for a new 'symbology' of iterated elliptic/polylogarithmic integrals in order to bring them to a more canonical form.Comment: 4+2 pages, 2 figures. Explicit results are included as ancillary files. v2: minor changes made for clarification; references adde

    Soft gluon corrections to double transverse-spin asymmetries for small-QTQ_T dilepton production at RHIC and J-PARC

    Get PDF
    We calculate the double transverse-spin asymmetries, \aqt, in transversely polarized Drell-Yan process at the transverse-momentum QTQ_T of the produced lepton pair. We perform all-order resummation of the logarithmically enhanced contributions in the relevant Drell-Yan cross sections at small QTQ_T, which are due to multiple soft gluon emission in QCD, up to the next-to-leading logarithmic accuracy. The asymmetries \aqt to be observed in polarized experiments at RHIC and J-PARC are studied numerically as a function of QTQ_T. We show that the effects of the soft gluon resummation to the polarized and unpolarized cross sections largely cancel in \aqt, but the significant corrections still remain and are crucial for making a reliable QCD prediction of \aqt. In particular, the soft gluon corrections enhance \aqt considerably in the small QTQ_T region compared with the asymmetry in the fixed-order αs\alpha_s perturbation theory. We also derive a novel asymptotic formula which embodies those remarkable features of \aqt at small QTQ_T in a compact analytic form and is useful to extract the transversity δq(x)\delta q(x) from the experimental data.Comment: 26 pages, 12 figures, typos corrected, references added, version to appear in Nucl. Phys.

    Indirect searches of dark matter via polynomial spectral features

    Full text link
    We derive the spectra arising from non-relativistic dark matter annihilations or decays into intermediary particles with arbitrary spin, which subsequently produce neutrinos or photons via two-body decays. Our approach is model independent and predicts spectral features restricted to a kinematic box. The overall shape within that box is a polynomial determined by the polarization of the decaying particle. We illustrate our findings with two examples. First, with the neutrino spectra arising from dark matter annihilations into the massive Standard Model gauge bosons. Second, with the gamma-ray and neutrino spectra generated by dark matter annihilations into hypothetical massive spin-2 particles. Our results are in particular applicable to the 750 GeV diphoton excess observed at the LHC if interpreted as a spin-0 or spin-2 particle coupled to dark matter. We also derive limits on the dark matter annihilation cross section into this resonance from the non-observation of the associated gamma-ray spectral features by the H.E.S.S. telescope.Comment: 19 pages, modified title, added references, minor changes. To appear in JCA

    Unstable superheavy relic particles as a source of neutrinos responsible for the ultrahigh-energy cosmic rays

    Full text link
    Decays of superheavy relic particles may produce extremely energetic neutrinos. Their annihilations on the relic neutrinos can be the origin of the cosmic rays with energies beyond the Greisen-Zatsepin-Kuzmin cutoff. The red shift acts as a cosmological filter selecting the sources at some particular value z_e, for which the present neutrino energy is close to the Z pole of the annihilation cross section. We predict no directional correlation of the ultrahigh-energy cosmic rays with the galactic halo. At the same time, there can be some directional correlations in the data, reflecting the distribution of matter at red shift z=z_e. Both of these features are manifest in the existing data. Our scenario is consistent with the neutrino mass reported by Super-Kamiokande and requires no lepton asymmetry or clustering of the background neutrinos.Comment: 3 pages, revtex; references adde

    The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

    Get PDF
    We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level fixed order, shower-matched, merged -- in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e+ee^+e^- collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.Comment: 158 pages, 27 figures; a few references have been adde
    corecore