128 research outputs found

    Mobile-IP ad-hoc network MPLS-based with QoS support.

    Get PDF
    The support for Quality of Service (QoS) is the main focus of this thesis. Major issues and challenges for Mobile-IP Ad-Hoc Networks (MANETs) to support QoS in a multi-layer manner are considered discussed and investigated through simulation setups. Different parameters contributing to the subjective measures of QoS have been considered and consequently, appropriate testbeds were formed to measure these parameters and compare them to other schemes to check for superiority. These parameters are: Maximum Round-Trip Delay (MRTD), Minimum Bandwidth Guaranteed (MBG), Bit Error Rate (BER), Packet Loss Ratio (PER), End-To-End Delay (ETED), and Packet Drop Ratio (PDR) to name a few. For network simulations, NS-II (Network Simulator Version II) and OPNET simulation software systems were used.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .A355. Source: Masters Abstracts International, Volume: 44-03, page: 1444. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Efficient, Reliable and Secure Distributed Protocols for MANETs

    Get PDF
    This thesis is divided into two parts. The first part explores the difficulties of bootstrapping and maintaining a security infrastructure for military Mobile Ad Hoc NETworks (MANETs). The assumed absence of dedicated infrastructural elements necessitates, that security services in ad hoc networks may be built from the ground up. We develop a cluster algorithm, incorporating a trust metric in the cluster head selection process to securely determine constituting nodes in a distributed Trust Authority (TA) for MANETs. Following this, we develop non-interactive key distribution protocols for the distribution of symmetric keys in MANETs. We explore the computational requirements of our protocols and simulate the key distribution process. The second part of this thesis builds upon the security infrastructure of the first part and examines two distributed protocols for MANETs. Firstly, we present a novel algorithm for enhancing the efficiency and robustness of distributed protocols for contacting TA nodes in MANETs. Our algorithm determines a quorum of trust authority nodes required for a distributed protocol run based upon a set of quality metrics, and establishes an efficient routing strategy to contact these nodes. Secondly, we present a probabilistic path authentication scheme based on message authentication codes (MACs). Our scheme minimises both communication and computation overhead in authenticating the path over which a stream of packets travels and facilitates the detection of adversarial nodes on the path
    • …
    corecore