390 research outputs found

    Enabling Techniques Design for QoS Provision in Wireless Communications

    Get PDF
    Guaranteeing Quality of Service (QoS) has become a recognized feature in the design of wireless communications. In this thesis, the problem of QoS provision is addressed from different prospectives in several modern communication systems. In the first part of the thesis, a wireless communication system with the base station (BS) associated by multiple subscribers (SS) is considered, where different subscribers require different QoS. Using the cross-layer approach, the conventional single queue finite state Markov chain system model is extended to multiple queues\u27 scenario by combining the MAC layer queue status with the physical layer channel states, modeled by finite state Markov channel (FSMC). To provide the diverse QoS to different subscribers, a priority-based rate allocation (PRA) algorithm is proposed to allocate the physical layer transmission rate to the multiple medium access control (MAC) layer queues, where different queues are assigned with different priorities, leading to their different QoS performance and thus, the diverse QoS are guaranteed. Then, the subcarrier allocation in multi-user OFDM (MU-OFDM) systems is stuied, constrained by the MAC layer diverse QoS requirements. A two-step cross-layer dynamic subcarrier allocation algorithm is proposed where the MAC layer queue status is firstly modeled by a finite state Markov chain, using which MAC layer diverse QoS constraints are transformed to the corresponding minimum physical layer data rate of each user. Then, with the purpose of maximizing the system capacity, the physical layer OFDM subcarriers are allocated to the multiple users to satisfy their minimum data rate requirements, which is derived by the MAC layer queue status model. Finally, the problem of channel assignment in IEEE 802.11 wireless local area networks (WLAN) is investigated, oriented by users\u27 QoS requirements. The number of users in the IEEE 802.11 channels is first determined through the number of different channel impulse responses (CIR) estimated at physical layer. This information is involved thereafter in the proposed channel assignment algorithm, which aims at maximum system throughput, where we explore the partially overlapped IEEE 802.11 channels to provide additional frequency resources. Moreover, the users\u27 QoS requirements are set to trigger the channel assignment process, such that the system can constantly maintain the required QoS

    QoS based Radio Resource Management Techniques for Next Generation MU-MIMO WLANs: A Survey

    Get PDF
    IEEE 802.11 based Wireless Local Area Networks (WLANs) have emerged as a popular candidate that offers Internet services for wireless users. The demand of data traffic is increasing every day due to the increase in the use of multimedia applications, such as digital audio, video, and online gaming. With the inclusion of Physical Layer (PHY) technologies, such as the OFDM and MIMO, the current 802.11ac WLANs are claiming Gigabit speeds. Hence, the existing Medium Access Control (MAC) must be in a suitable position to convert the offered PHY data rates for efficient throughput. Further, the integration of cellular networks with WLANs requires unique changes at MAC layer. It is highly required to preserve the Quality of Service (QoS) in these scenarios. Fundamentally, many QoS issues arise from the problem of effective Radio Resource Management (RRM). Although IEEE 802.11 has lifted PHY layer aspects, there is a necessity to investigate MAC layer issues, such as resource utilization, scheduling, admission control and congestion control. In this survey, a literature overview of these techniques, namely the resource allocation and scheduling algorithms are briefly discussed in connection with the QoS at MAC layer. Further, some anticipated enhancements proposed for Multi-User Multiple-Input and Multiple-Output (MU-MIMO) WLANs are discussed

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    Medium access control with physical-layer-assisted link differentiation

    Get PDF
    In this paper, we develop medium access control (MAC) schemes for both contention and contention-free accesses over wireless local area networks and give performance analysis of these MAC protocols. User detection and multirate adaptation (MRA) modules are proposed in the physical layer (PHY) to assist link differentiation. With these two modules, for contention accesses, a new distributed queuing MAC protocol (PALD-DQMP) is proposed. Based on different users' channel states, PALD-DQMP makes use of a distributed queuing system to schedule transmissions. To support multimedia transmissions, an enhanced PALD-DQMP (E-PALD-DQMP) is designed by providing two-level optimized transmission scheduling for four access categories, thus eliminating both external and internal collisions among mobile stations. For contention-free accesses, based on the same PHY-assisted link differentiation provided by the two modules, a new multipolling MAC protocol (PALD-MPMP) is proposed, which not only reduces the polling overhead but also prioritizes transmissions according to their delay requirements. Performance analysis and simulation results show that our proposed protocols outperform the standard MAC protocols for both delay-sensitive and best-effort traffics. All these improvements are mainly attributed to the awareness of cross-layer channel state information and the consequent MRA scheme. © 2008 IEEE.published_or_final_versio

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore