26,553 research outputs found

    Academic Librarianship and Career Adaptability

    Get PDF
    The inspiration for this essay is Barbara Fister’s assertion that librarians must embrace functions that have not traditionally been part of the academic librarian’s portfolio. We shall examine the need for career adaptability in librarianship and use a case study to illustrate the four attributes librarians need to develop to ensure career adaptability. The case study involved collaboration between Kansas State University (KSU) Libraries, an agronomy professor, and the Global Research Alliance to develop an open access croplands research database. We will draw upon the field of vocational psychology to discuss career adaptability and ways librarians can develop the traits needed for good career adaptability: career concern, career control, career curiosity and career confidence (4 Cs) (Savickas, 2005)

    Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China

    Get PDF
    Afforestation has been implemented worldwide as regional and national policies to address environmental problems and to improve ecosystem services. China\u27s central government launched the “Grain for Green” Program (GGP) in 1999 to increase forest cover and to control soil erosion by converting agricultural lands on steep slopes to forests and grasslands. Here a variety of satellite data products from the Moderate Resolution Imaging Spectroradiometer were used to assess the biophysical consequences of the GGP for the Loess Plateau, the pilot region of the program. The average tree cover of the plateau substantially increased because of the GGP, with a relative increase of 41.0%. The GGP led to significant increases in enhanced vegetation index (EVI), leaf area index, and the fraction of photosynthetically active radiation absorbed by canopies. The increase in forest productivity as approximated by EVI was not driven by elevated air temperature, changing precipitation, or rising atmospheric carbon dioxide concentrations. Moreover, the afforestation significantly reduced surface albedo, leading to a positive radiative forcing and a warming effect on the climate. The GGP also led to a significant decline in daytime land surface temperature and exerted a cooling effect on the climate. The GGP therefore has significant biophysical consequences by altering carbon cycling, hydrologic processes, and surface energy exchange and has significant feedbacks to the regional climate. The net radiative forcing on the climate depends on the offsetting of the negative forcing from carbon sequestration and higher evapotranspiration and the positive forcing from lower albedo

    Modelling spatial and inter-annual variations of nitrous oxide emissions from UK cropland and grasslands using DailyDayCent

    Get PDF
    This work contributes to the Defra funded projects AC0116: ‘Improving the nitrous oxide inventory’, and AC0114: ‘Data Synthesis, Management and Modelling’. Funding for this work was provided by the UK Department for Environment, Food and Rural Affairs (Defra) AC0116 and AC0114, the Department of Agriculture, Environment and Rural Affairs for Northern Ireland, the Scottish Government and the Welsh Government. Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council. This study also contributes to the projects: N-Circle (BB/N013484/1), U-GRASS (NE/M016900/1) and GREENHOUSE (NE/K002589/1).Peer reviewedPublisher PD

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    Dentrification potential of different landuse types in an agricultural watershed, lower Mississippi valley.

    Get PDF
    Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi River watershed has resulted in a three-fold increase in the nitrate load of the river since the early 1950s. One way to reduce this nitrate load is to restore wetlands at suitable locations between croplands and receiving waters to remove run-off nitrate through previous termdenitrification.next term This research investigated previous termdenitrificationnext term potential (DP) of different land uses and its controlling factors in an agricultural watershed in the lower Mississippi valley (previous termLMV)next term to help identify sites with high DP for reducing run-off nitrate. Soil samples collected from seven land-use types of an agricultural watershed during spring, summer, fall and winter were incubated in the laboratory for DP determination. Low-elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-elevation silt loam and low-elevation clay soils in croplands, respectively. DP of vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, respectively. Soil carbon and nitrogen availability, bulk density, and soil moisture significantly affected DP. These factors were significantly influenced in turn by landscape position and land-use type of the watershed. It is evident from these results that low-elevation, fine-textured soils under natural wetlands are the best locations for mediating nitrate loss from agricultural watersheds in the previous termLMV.next term Landscape position and land-use types can be used as indices for the assessment/modeling of previous termdenitrificationnext term potential and identification of sites for restoration for nitrate removal in agricultural watersheds

    Water use efficiency of China\u27s terrestrial ecosystems and responses to drought

    Get PDF
    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity

    Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America

    Get PDF
    The regional controls of biodiversity patterns have been traditionally evaluated using structural and compositional components at the species level, but evaluation of the functional component at the ecosystem level is still scarce. During the last decades, the role of ecosystem functioning in management and conservation has increased. Our aim was to use satellite-derived Ecosystem Functional Types (EFTs, patches of the land-surface with similar carbon gain dynamics) to characterize the regional patterns of ecosystem functional diversity and to evaluate the environmental and human controls that determine EFT richness across natural and human-modified systems in temperate South America. The EFT identification was based on three descriptors of carbon gain dynamics derived from seasonal curves of the MODIS Enhanced Vegetation Index (EVI): annual mean (surrogate of primary production), seasonal coefficient of variation (indicator of seasonality) and date of maximum EVI (descriptor of phenology). As observed for species richness in the southern hemisphere, water availability, not energy, emerged as the main climatic driver of EFT richness in natural areas of temperate South America. In anthropogenic areas, the role of both water and energy decreased and increasing human intervention increased richness at low levels of human influence, but decreased richness at high levels of human influence

    Giving credit to reforestation for water quality benefits.

    Get PDF
    While there is a general belief that reforesting marginal, often unprofitable, croplands can result in water quality benefits, to date there have been very few studies that have attempted to quantify the magnitude of the reductions in nutrient (N and P) and sediment export. In order to determine the magnitude of a credit for water quality trading, there is a need to develop quantitative approaches to estimate the benefits from forest planting in terms of load reductions. Here we first evaluate the availability of marginal croplands (i.e. those with low infiltration capacity and high slopes) within a large section of the Ohio River Basin (ORB) to assess the magnitude of the land that could be reforested. Next, we employ the Nutrient Tracking Tool (NTT) to study the reduction in N, P and sediment losses from converting corn or corn/soy rotations to forested lands, first in a case study and then for a large region within the ORB. We find that after reforestation, N losses can decrease by 40 to 80 kg/ha-yr (95-97% reduction), while P losses decrease by 1 to 4 kg/ha-yr (96-99% reduction). There is a significant influence of local conditions (soils, previous crop management practices, meteorology), which can be considered with NTT and must be taken into consideration for specific projects. There is also considerable interannual and monthly variability, which highlights the need to take the longer view into account in nutrient credit considerations for water quality trading, as well as in monitoring programs. Overall, there is the potential for avoiding 60 million kg N and 2 million kg P from reaching the streams and rivers of the northern ORB as a result of conversion of marginal farmland to tree planting, which is on the order of 12% decrease for TN and 5% for TP, for the entire basin. Accounting for attenuation, this represents a significant fraction of the goal of the USEPA Gulf of Mexico Hypoxia Task Force to reduce TN and TP reaching the dead zone in the Gulf of Mexico, the second largest dead zone in the world. More broadly, the potential for targeted forest planting to reduce nutrient loading demonstrated in this study suggests further consideration of this approach for managing water quality in waterways throughout the world. The study was conducted using computational models and there is a need to evaluate the results with empirical observations
    • 

    corecore