77 research outputs found

    Triplicate functions

    Get PDF
    We define the class of triplicate functions as a generalization of 3-to-1 functions over GF(2^n) for even values of n. We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN functions and quadratic 3-to-1 functions; we show that, in this sense, quadratic 3-to-1 functions are a generalization of quadratic power APN functions for even dimensions, while quadratic APN permutations are generalizations of quadratic power APN functions for odd dimensions. We show that quadratic 3-to-1 APN functions cannot be CCZ-equivalent to permutations in the case of doubly-even dimensions. We survey all known infinite families of APN functions with respect to the presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions that are quadratic 3-to-1 or EA-equivalent to quadratic 3-to-1 functions. We also give a simpler univariate representation of the family recently introduced by Gologlu singly-even dimensions n than the ones currently available in the literature

    Generalizations of Schottky groups

    Get PDF
    Schottky groups are classical examples of free groups acting properly discontinuously on the complex projective line. We discuss two different applications of similar constructions. The first gives examples of 3-dimensional Lorentzian Kleinian groups which act properly discontinuously on an open dense subset of the Einstein universe. The second gives a large class of examples of free subgroups of automorphisms groups of partially cyclically ordered spaces. We show that for a certain cyclic order on the Shilov boundary of a Hermitian symmetric space, this construction corresponds exactly to representations of fundamental groups of surfaces with boundary which have maximal Toledo invariant

    TB142: Mayflies of Maine: An Annotated Faunal List

    Get PDF
    The purpose of this study is to determine the composition and distribution of the mayfly fauna and to reference all pertinent taxonomic, ecologic, and biologic data.https://digitalcommons.library.umaine.edu/aes_techbulletin/1200/thumbnail.jp

    The Archaeology of Hassanamesit Woods: The Sarah Burnee/Sarah Boston Farmstead

    Get PDF
    Between 2003 and 2013 the Fiske Center for Archaeological Research at the University of Massachusetts Boston conducted an intensive investigation of the Sarah Burnee/Sarah Boston Farmstead on Keith Hill in Grafton, Massachusetts. The project employed a collaborative method that involved working closely with the Town of Grafton, through the Hassanmesit Woods Management Committee, and the Nipmuc Nation, the state recognized government of the Nipmuc people. Yearly excavation and research plans were decided through consultation with both the Nipmuc Tribal Council, their designated representative, Dr. D. Rae Gould, and the Hassanamesit Woods Management Committee. Dr. Gould also played a continuous and active role in reviewing and collaborating on research activities including scholarly presentations at national and international academic meetings and public presentations at the community level. Large scale excavation between 2006 and 2013 focused on the Sarah Burnee/Sarah Boston farmstead that was occupied intensively between 1750 and 1840. Sarah Burnee and Sarah Boston were two of four Nipmuc women to own and possibly reside on the 206 acre parcel that today comprises Hassanamesit Woods. The other two, Sarah Robins and Sarah Muckamaug, were Sarah Burnee’s grandmother and mother respectively. Excavation, archaeogeophysical survey, soil chemistry, and micromorphological and macrobotanical analysis were combined with the analysis of material culture and faunal material to generate a detailed picture of Nipmuc life during the 18th and 19th centuries. Excavation also found evidence of earlier indigenous occupations spanning some 6,000 years. The most intensive period of occupation covered the period 1750 to 1840, but with a significant spike the period 1790 to 1830. This appears to coincide with the coming of age of Sarah Boston who continues to live in the household with her mother Sarah Burnee Philips. Based on a combination of the documentary, architectural and archaeological data, it seems that an addition was made the structure between 1799 and 1802. A rich material assemblage of more than 120,000 artifacts was recovered from the site that provides detailed information on cultural practices including foodways, exchange networks, agricultural activities and other work-related activities such as basket making. A wealth of foodways related artifacts as well as faunal and floral remains provide ample evidence of daily meals and feasting. The latter conclusion is particularly important because of the implications is has for demonstrating that the Hassanamisco Nipmuc were regularly engaged in political activities. We believe the findings of the project provide empirical evidence that counters arguments made by the Bureau of Indian Affairs that the Hassanamisco Nipmuc did not persist as a politically and culturally continuous community

    Basic graphics : an introduction to rudimentary graphic design

    Get PDF
    These notes were compiled from several authorities to be used for teaching and learning purposes here at QUT, with the focus on first and second year landscape architecture design studio units

    High-Order Mixed Finite Element Variable Eddington Factor Methods

    Full text link
    We apply high-order mixed finite element discretization techniques and their associated preconditioned iterative solvers to the Variable Eddington Factor (VEF) equations in two spatial dimensions. The mixed finite element VEF discretizations are coupled to a high-order Discontinuous Galerkin (DG) discretization of the Discrete Ordinates transport equation to form effective linear transport algorithms that are compatible with high-order (curved) meshes. This combination of VEF and transport discretizations is motivated by the use of high-order mixed finite element methods in hydrodynamics calculations at the Lawrence Livermore National Laboratory. Due to the mathematical structure of the VEF equations, the standard Raviart Thomas (RT) mixed finite elements cannot be used to approximate the vector variable in the VEF equations. Instead, we investigate three alternatives based on the use of continuous finite elements for each vector component, a non-conforming RT approach where DG-like techniques are used, and a hybridized RT method. We present numerical results that demonstrate high-order accuracy, compatibility with curved meshes, and robust and efficient convergence in iteratively solving the coupled transport-VEF system and in the preconditioned linear solvers used to invert the discretized VEF equations

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin

    Characterization and Modelling of Composites, Volume II

    Get PDF
    Composites have been increasingly used in various structural components in the aerospace, marine, automotive, and wind energy sectors. Composites’ material characterization is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue is aimed at soliciting promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review and will only be considered for publication if they meet journal standards

    Exterior Complex Scaling Approach for Atoms and Molecules in Strong DC Fields

    Get PDF
    We perform a short review of the history of quantum mechanics, with a focus on the historical problems with describing ionization theoretically in the context of quantum mechanics. The essentials of the theory of resonances are presented. The exterior complex scaling method for obtaining resonance parameters within the context of the Schrodinger equation is detailed. We explain how this is implemented for a numerical solution using a finite element method for the scaled variable. Results for the resonance parameters of a one-dimensional hydrogen model in an external direct current (DC) electric field are presented as proof of the independence of the theory from the scaling angle. We apply the theory to the real hydrogen atom in a DC field and present results which agree with literature values. The resonance parameters for singly ionized helium are also presented. Using a model potential energy for the water molecule, we solve for the energy eigenvalues. We then solve for the resonance parameters of the water molecule in a DC field and compare to literature results. Our widths for the valence orbital are shown to agree well with the so-called "coupled-cluster singles and doubles with perturbative triples excitations" method
    • …
    corecore