16 research outputs found

    Comparison of ontology alignment systems across single matching task via the McNemar's test

    Full text link
    Ontology alignment is widely-used to find the correspondences between different ontologies in diverse fields.After discovering the alignments,several performance scores are available to evaluate them.The scores typically require the identified alignment and a reference containing the underlying actual correspondences of the given ontologies.The current trend in the alignment evaluation is to put forward a new score(e.g., precision, weighted precision, etc.)and to compare various alignments by juxtaposing the obtained scores. However,it is substantially provocative to select one measure among others for comparison.On top of that, claiming if one system has a better performance than one another cannot be substantiated solely by comparing two scalars.In this paper,we propose the statistical procedures which enable us to theoretically favor one system over one another.The McNemar's test is the statistical means by which the comparison of two ontology alignment systems over one matching task is drawn.The test applies to a 2x2 contingency table which can be constructed in two different ways based on the alignments,each of which has their own merits/pitfalls.The ways of the contingency table construction and various apposite statistics from the McNemar's test are elaborated in minute detail.In the case of having more than two alignment systems for comparison, the family-wise error rate is expected to happen. Thus, the ways of preventing such an error are also discussed.A directed graph visualizes the outcome of the McNemar's test in the presence of multiple alignment systems.From this graph, it is readily understood if one system is better than one another or if their differences are imperceptible.The proposed statistical methodologies are applied to the systems participated in the OAEI 2016 anatomy track, and also compares several well-known similarity metrics for the same matching problem

    Results of the Ontology Alignment Evaluation Initiative 2015

    Get PDF
    cheatham2016aInternational audienceOntology matching consists of finding correspondences between semantically related entities of two ontologies. OAEI campaigns aim at comparing ontology matching systems on precisely defined test cases. These test cases can use ontologies of different nature (from simple thesauri to expressive OWL ontologies) and use different modalities, e.g., blind evaluation, open evaluation and consensus. OAEI 2015 offered 8 tracks with 15 test cases followed by 22 participants. Since 2011, the campaign has been using a new evaluation modality which provides more automation to the evaluation. This paper is an overall presentation of the OAEI 2015 campaign

    Biomedical ontology alignment: An approach based on representation learning

    Get PDF
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance. An ontology matching system derived using the proposed framework achieved an F-score of 94% on an alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results

    Ontology alignment based on word embedding and random forest classification.

    Get PDF
    Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component for realising the goals of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering correspondences between the concepts (or entities) of different ontologies. However, these techniques mostly depend on string-based similarities which are unable to handle the vocabulary mismatch problem. Also, determining which similarity measures to use and how to effectively combine them in alignment systems are challenges that have persisted in this area. In this work, we introduce a random forest classifier approach for ontology alignment which relies on word embedding to discover semantic similarities between concepts. Specifically, we combine string-based and semantic similarity measures to form feature vectors that are used by the classifier model to determine when concepts match. By harnessing background knowledge and relying on minimal information from the ontologies, our approach can deal with knowledge-light ontological resources. It also eliminates the need for learning the aggregation weights of multiple similarity measures. Our experiments using Ontology Alignment Evaluation Initiative (OAEI) dataset and real-world ontologies highlight the utility of our approach and show that it can outperform state-of-the-art alignment systems

    TRC-Matcher and enhanced TRC-Matcher. New Tools for Automatic XML Schema Matching

    Get PDF
    Siirretty Doriast

    A Data-driven Approach to Large Knowledge Graph Matching

    Get PDF
    In the last decade, a remarkable number of open Knowledge Graphs (KGs) were developed, such as DBpedia, NELL, and YAGO. While some of such KGs are curated via crowdsourcing platforms, others are semi-automatically constructed. This has resulted in a significant degree of semantic heterogeneity and overlapping facts. KGs are highly complementary; thus, mapping them can benefit intelligent applications that require integrating different KGs such as recommendation systems, query answering, and semantic web navigation. Although the problem of ontology matching has been investigated and a significant number of systems have been developed, the challenges of mapping large-scale KGs remain significant. KG matching has been a topic of interest in the Semantic Web community since it has been introduced to the Ontology Alignment Evaluation Initiative (OAEI) in 2018. Nonetheless, a major limitation of the current benchmarks is their lack of representation of real-world KGs. This work also highlights a number of limitations with current matching methods, such as: (i) they are highly dependent on string-based similarity measures, and (ii) they are primarily built to handle well-formed ontologies. These features make them unsuitable for large, (semi/fully) automatically constructed KGs with hundreds of classes and millions of instances. Another limitation of current work is the lack of benchmark datasets that represent the challenging task of matching real-world KGs. This work addresses the limitation of the current datasets by first introducing two gold standard datasets for matching the schema of large, automatically constructed, less-well-structured KGs based on common KGs such as NELL, DBpedia, and Wikidata. We believe that the datasets which we make public in this work make the largest domain-independent benchmarks for matching KG classes. As many state-of-the-art methods are not suitable for matching large-scale and cross-domain KGs that often suffer from highly imbalanced class distribution, recent studies have revisited instance-based matching techniques in addressing this task. This is because such large KGs often lack a well-defined structure and descriptive metadata about their classes, but contain numerous class instances. Therefore, inspired by the role of instances in KGs, we propose a hybrid matching approach. Our method composes an instance-based matcher that casts the schema-matching process as a text classification task by exploiting instances of KG classes, and a string-based matcher. Our method is domain-independent and is able to handle KG classes with imbalanced populations. Further, we show that incorporating an instance-based approach with the appropriate data balancing strategy results in significant results in matching large and common KG classes

    A hybrid approach for large knowledge graphs matching

    Get PDF
    Matching large and heterogeneous Knowledge Graphs (KGs) has been a challenge in the Semantic Web research community. This work highlights a number of limitations with current matching methods, such as: (1) they are highly dependent on string-based similarity measures, and (2) they are primarily built to handle well-formed ontologies. These features make them unsuitable for large, (semi-) automatically constructed KGs with hundreds of classes and millions of instances. Such KGs share a remarkable number of complementary facts, often described using different vocabulary. Inspired by the role of instances in large-scale KGs, we propose a hybrid matching approach. Our method composes an instance-based matcher that casts the schema matching process as a two-way text classification task by exploiting instances of KG classes, and a string-based matcher. Our method is domain-independent and is able to handle KG classes with unbalanced population. Our evaluation on a real-world KG dataset shows that our method obtains the highest recall and F1 over all OAEI 2020 participants

    Ontology alignment based on word embedding and random forest classification

    Get PDF
    Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component for realising the goals of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering correspondences between the concepts (or entities) of different ontologies. However, these techniques mostly depend on string-based similarities which are unable to handle the vocabulary mismatch problem. Also, determining which similarity measures to use and how to effectively combine them in alignment systems are challenges that have persisted in this area. In this work, we introduce a random forest classifier approach for ontology alignment which relies on word embedding to discover semantic similarities between concepts. Specifically, we combine string-based and semantic similarity measures to form feature vectors that are used by the classifier model to determine when concepts match. By harnessing background knowledge and relying on minimal information from the ontologies, our approach can deal with knowledge-light ontological resources. It also eliminates the need for learning the aggregation weights of multiple similarity measures. Our experiments using Ontology Alignment Evaluation Initiative (OAEI) dataset and real-world ontologies highlight the utility of our approach and show that it can outperform state-of-the-art alignment systems
    corecore