43 research outputs found

    Criticality in biocomputation

    Get PDF
    Complexity in biological computation is one of the recognised means by which biological systems manage to function in a complex chaotic world. The ability to function and solve problems irrespective of scale and relative complexity, including higher-order interactions, is essential to the efficacy of biological systems. However, it has been unclear how the required complexity can be introduced to allow these functions to be realised. Nonlinear local interactions are required to combine into a global stable system. The property of criticality, that is exhibited by many nonlinear physical systems, can be exploited to allow local nonlinear oscillators to interact, resulting in a globally stable system. This concept introduces robustness, as well as, a means to control global stability

    Integral Biomathics Reloaded: 2015

    Get PDF
    An updated survey of the research scope in Integral Biomathics

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Modeling Directed Local Search Strategies on Technology

    Get PDF
    NK Model, Technology Landscape, Depth and Breadth of Search, Simulation Analysis

    Emergence of consensus as a modular-to-nested transition in communication dynamics

    Get PDF
    Online social networks have transformed the way in which humans communicate and interact, leading to a new information ecosystem where people send and receive information through multiple channels, including traditional communication media. Despite many attempts to characterize the structure and dynamics of these techno-social systems, little is known about fundamental aspects such as how collective attention arises and what determines the information life-cycle. Current approaches to these problems either focus on human temporal dynamics or on semiotic dynamics. In addition, as recently shown, information ecosystems are highly competitive, with humans and memes striving for scarce resources -visibility and attention, respectively. Inspired by similar problems in ecology, here we develop a methodology that allows to cast all the previous aspects into a compact framework and to characterize, using microblogging data, information-driven systems as mutualistic networks. Our results show that collective attention around a topic is reached when the user-meme network self-adapts from a modular to a nested structure, which ultimately allows minimizing competition and attaining consensus. Beyond a sociological interpretation, we explore such resemblance to natural mutualistic communities via well-known dynamics of ecological systems.Comment: Main text + Supplementary Information (merged). To appear in Scientific Reports (2017

    Identifying the hidden multiplex architecture of complex systems

    Get PDF
    Documento depositado en el repositorio arXiv.org. Versión: arXiv:1705.04661v1 [physics.soc-ph]The architecture of many complex systems is well described by multiplex interaction networks, and their dynamics is often the result of several intertwined processes taking place at different levels. However only in a few cases can such multi-layered architecture be empirically observed, as one usually only has experimental access to such structure from an aggregated projection. A fundamental question is thus to determine whether the hidden underlying architecture of complex systems is better modelled as a single interaction layer or results from the aggregation and interplay of multiple layers. Here we show that, by only using local information provided by a random walker navigating the aggregated network, it is possible to decide in a robust way if the underlying structure is a multiplex and, in the latter case, to determine the most probable number of layers. The proposed methodology detects and estimates the optimal architecture capable of reproducing observable non- Markovian dynamics taking place on networks, with applications ranging from human or animal mobility to electronic transport or molecular motors. Furthermore, the mathematical theory extends above and beyond detection of physical layers in networked complex systems, as it provides a general solution for the optimal decomposition of complex dynamics in a Markov switching combination of simple (diffusive) dynamics

    Structural Differences Between Healthy Subjects and Patients With Schizophrenia or Schizoaffective Disorder: A Graph and Control Theoretical Perspective

    Get PDF
    The coordinated dynamic interactions of large-scale brain circuits and networks have been associated with cognitive functions and behavior. Recent advances in network neuroscience have suggested that the anatomical organization of such networks puts fundamental constraints on the dynamical landscape of brain activity, i.e., the different states, or patterns of regional activation, and transition between states the brain can display. Specifically, it has been shown that densely connected, central regions control the transition between states that are “easily” reachable (in terms of expended energy), whereas weakly connected areas control transitions to states that are hard-to-reach. Changes in large-scale brain activity have been hypothesized to underlie many neurological and psychiatric disorders. Evidence has emerged that large-scale dysconnectivity might play a crucial role in the pathophysiology of schizophrenia, especially regarding cognitive symptoms. Therefore, an analysis of graph and control theoretic measures of large-scale brain connectivity in patients offers to give insight into the emergence of cognitive disturbances in the disorder. To investigate these potential differences between patients with schizophrenia (SCZ), patients with schizoaffective disorder (SCZaff) and matched healthy controls (HC), we used structural MRI data to assess the microstructural organization of white matter. We first calculate seven graph measures of integration, segregation, centrality and resilience and test for group differences. Second, we extend our analysis beyond these traditional measures and employ a simplified noise-free linear discrete-time and time-invariant network model to calculate two complementary measures of controllability. Average controllability, which identifies brain areas that can guide brain activity into different, easily reachable states with little input energy and modal controllability, which characterizes regions that can push the brain into difficult-to-reach states, i.e., states that require substantial input energy. We identified differences in standard network and controllability measures for both patient groups compared to HCs. We found a strong reduction of betweenness centrality for both patient groups and a strong reduction in average controllability for the SCZ group again in comparison to the HC group. Our findings of network level deficits might help to explain the many cognitive deficits associated with these disorders.Peer reviewe
    corecore