1,515 research outputs found

    Inferring ancestral sequences in taxon-rich phylogenies

    Full text link
    Statistical consistency in phylogenetics has traditionally referred to the accuracy of estimating phylogenetic parameters for a fixed number of species as we increase the number of characters. However, as sequences are often of fixed length (e.g. for a gene) although we are often able to sample more taxa, it is useful to consider a dual type of statistical consistency where we increase the number of species, rather than characters. This raises some basic questions: what can we learn about the evolutionary process as we increase the number of species? In particular, does having more species allow us to infer the ancestral state of characters accurately? This question is particularly relevant when sequence site evolution varies in a complex way from character to character, as well as for reconstructing ancestral sequences. In this paper, we assemble a collection of results to analyse various approaches for inferring ancestral information with increasing accuracy as the number of taxa increases.Comment: 32 pages, 5 figures, 1 table

    Common lizards break Dollo’s law of irreversibility: genome-wide phylogenomics support a single origin of viviparity and re-evolution of oviparity

    Get PDF
    Dollo’s law of irreversibility states that once a complex trait has been lost in evolution, it cannot be regained. It is thought that complex epistatic interactions and developmental constraints impede the re-emergence of such a trait. Oviparous reproduction (egg-laying) requires the formation of an eggshell and represents an example of such a complex trait. In reptiles, viviparity (live-bearing) has evolved repeatedly but it is highly disputed if oviparity has re-evolved. Here, using up to 194,358 SNP loci and 1,334,760 bp of sequence, we reconstruct the phylogeny of viviparous and oviparous lineages of common lizards and infer the evolutionary history of parity modes. Our phylogeny supports six main common lizard lineages that have been previously identified. We find strong statistical support for a topological arrangement that suggests a reversal to oviparity from viviparity. Our topology is consistent with highly differentiated chromosomal configurations between lineages, but disagrees with previous phylogenetic studies in some nodes. While we find high support for a reversal to oviparity, more genomic and developmental data are needed to robustly test this and assess the mechanism by which a reversal might have occurred

    The amphioxus genome and the evolution of the chordate karyotype

    Get PDF
    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approx520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution

    Rebooting the human mitochondrial phylogeny: an automated and scalable methodology with expert knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA is an ideal source of information to conduct evolutionary and phylogenetic studies due to its extraordinary properties and abundance. Many insights can be gained from these, including but not limited to screening genetic variation to identify potentially deleterious mutations. However, such advances require efficient solutions to very difficult computational problems, a need that is hampered by the very plenty of data that confers strength to the analysis.</p> <p>Results</p> <p>We develop a systematic, automated methodology to overcome these difficulties, building from readily available, public sequence databases to high-quality alignments and phylogenetic trees. Within each stage in an autonomous workflow, outputs are carefully evaluated and outlier detection rules defined to integrate expert knowledge and automated curation, hence avoiding the manual bottleneck found in past approaches to the problem. Using these techniques, we have performed exhaustive updates to the human mitochondrial phylogeny, illustrating the power and computational scalability of our approach, and we have conducted some initial analyses on the resulting phylogenies.</p> <p>Conclusions</p> <p>The problem at hand demands careful definition of inputs and adequate algorithmic treatment for its solutions to be realistic and useful. It is possible to define formal rules to address the former requirement by refining inputs directly and through their combination as outputs, and the latter are also of help to ascertain the performance of chosen algorithms. Rules can exploit known or inferred properties of datasets to simplify inputs through partitioning, therefore cutting computational costs and affording work on rapidly growing, otherwise intractable datasets. Although expert guidance may be necessary to assist the learning process, low-risk results can be fully automated and have proved themselves convenient and valuable.</p

    Phylogenetics in plant biotechnology: principles, obstacles and opportunities for the resource poor

    Get PDF
    Phylogenetic inference has become routine for most studies of genetic variation among plant taxa. However, inferring phylogenies can be confounded by both biological and computational or statisticalcomplexities, resulting in misleading evolutionary hypotheses. This is particularly critical because the “true tree” can only truly be known in exceptional circumstances. Moreover, selecting appropriatemarker(s), characters, sample sizes and the appropriate reconstruction methods offers a challenge to most evolutionary geneticists. Textbooks are generic (and sometimes outdated), and in resource poor labs, they may altogether be inaccessible. In this review, we take the worker through the low-down on reconstructing a phylogeny, review the enigmatic biological and computational problems, and examine cases where cheaper markers and extremely small sample sizes can recover a reliable phylogeny
    corecore