3,909 research outputs found

    Rational semimodules over the max-plus semiring and geometric approach of discrete event systems

    Get PDF
    We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule S^n over a semiring S is rational if it has a generating family that is a rational subset of S^n, S^n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (union, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.Comment: 24 pages, 9 postscript figures; example in section 4.3 expande

    Multilinear Time Invariant System Theory

    Full text link
    In biological and engineering systems, structure, function and dynamics are highly coupled. Such interactions can be naturally and compactly captured via tensor based state space dynamic representations. However, such representations are not amenable to the standard system and controls framework which requires the state to be in the form of a vector. In order to address this limitation, recently a new class of multiway dynamical systems has been introduced in which the states, inputs and outputs are tensors. We propose a new form of multilinear time invariant (MLTI) systems based on the Einstein product and even-order paired tensors. We extend classical linear time invariant (LTI) system notions including stability, reachability and observability for the new MLTI system representation by leveraging recent advances in tensor algebra.Comment: 8 pages, SIAM Conference on Control and its Applications 2019, accepted to appea

    Discrete events: Perspectives from system theory

    Get PDF
    Systems Theory;differentiaal/ integraal-vergelijkingen

    Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks

    Full text link
    In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets
    corecore