3,786 research outputs found

    Kronecker's Double Series and Exact Asymptotic Expansion for Free Models of Statistical Mechanics on Torus

    Full text link
    For the free models of statistical mechanics on torus, exact asymptotic expansions of the free energy, the internal energy and the specific heat in the vicinity of the critical point are found. It is shown that there is direct relation between the terms of the expansion and the Kronecker's double series. The latter can be expressed in terms of the elliptic theta-functions in all orders of the asymptotic expansion.Comment: REVTeX, 22 pages, this is expanded version which includes exact asymptotic expansions of the free energy, the internal energy and the specific hea

    K-Rational D-Brane Crystals

    Full text link
    In this paper the problem of constructing spacetime from string theory is addressed in the context of D-brane physics. It is suggested that the knowledge of discrete configurations of D-branes is sufficient to reconstruct the motivic building blocks of certain Calabi-Yau varieties. The collections of D-branes involved have algebraic base points, leading to the notion of K-arithmetic D-crystals for algebraic number fields K. This idea can be tested for D0-branes in the framework of toroidal compactifications via the conjectures of Birch and Swinnerton-Dyer. For the special class of D0-crystals of Heegner type these conjectures can be interpreted as formulae that relate the canonical Neron-Tate height of the base points of the D-crystals to special values of the motivic L-function at the central point. In simple cases the knowledge of the D-crystals of Heegner type suffices to uniquely determine the geometry.Comment: 36 page

    Determination of modular elliptic curves by Heegner points

    Get PDF
    For every integer N ≥ 1, consider the set K(N) of imaginary quadratic fields such that, for each K in K(N), its discriminant D is an odd, square-free integer congruent to 1 modulo 4, which is prime to N and a square modulo 4N. For each K, let c = ([x]−[∞]) be the divisor class of a Heegner point x of discriminant D on the modular curve X = X(0)(N) as in [GZ]. (Concretely, such an x is the image of a point z in the upper half plane H such that both z and Nz are roots of integral, definite, binary quadratic forms of the same discriminant D ([B]).) Then c defines a point rational over the Hilbert class field H of K on the Jacobian J = J(0)(N) of X. Denote by cK the trace of c to K

    Modular and duality properties of surface operators in N=2* gauge theories

    Get PDF
    We calculate the instanton partition function of the four-dimensional N=2* SU(N) gauge theory in the presence of a generic surface operator, using equivariant localization. By analyzing the constraints that arise from S-duality, we show that the effective twisted superpotential, which governs the infrared dynamics of the two-dimensional theory on the surface operator, satisfies a modular anomaly equation. Exploiting the localization results, we solve this equation in terms of elliptic and quasi-modular forms which resum all non-perturbative corrections. We also show that our results, derived for monodromy defects in the four-dimensional theory, match the effective twisted superpotential describing the infrared properties of certain two-dimensional sigma models coupled either to pure N=2 or to N=2* gauge theories.Comment: 51 pages, v3: references added, typos fixed, footnote added, some small changes in the text, appendix B streamlined. Matches the published versio

    Lam\'e polynomials, hyperelliptic reductions and Lam\'e band structure

    Full text link
    The band structure of the Lam\'e equation, viewed as a one-dimensional Schr\"odinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lam\'e equation parameters take complex values, are investigated. If the Lam\'e equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.Comment: 38 pages, 1 figure; final revision

    Classical torus conformal block, N=2* twisted superpotential and the accessory parameter of Lame equation

    Get PDF
    In this work the correspondence between the semiclassical limit of the DOZZ quantum Liouville theory on the torus and the Nekrasov-Shatashvili limit of the N=2* (Omega-deformed) U(2) super-Yang-Mills theory is used to propose new formulae for the accessory parameter of the Lame equation. This quantity is in particular crucial for solving the problem of uniformization of the one-punctured torus. The computation of the accessory parameters for torus and sphere is an open longstanding problem which can however be solved if one succeeds to derive an expression for the so-called classical Liouville action. The method of calculation of the latter has been proposed some time ago by Zamolodchikov brothers. Studying the semiclassical limit of the four-point function of the quantum Liouville theory on the sphere they have derived the classical action for the Riemann sphere with four punctures. In the present work Zamolodchikovs idea is exploited in the case of the Liouville field theory on the torus. It is found that the Lame accessory parameter is determined by the classical Liouville action on the one-punctured torus or more concretely by the torus classical block evaluated on the saddle point intermediate classical weight. Secondly, as an implication of the aforementioned correspondence it is obtained that the torus accessory parameter is related to the sum of all rescaled column lengths of the so-called "critical" Young diagrams extremizing the instanton "free energy" for the N=2* gauge theory. Finally, it is pointed out that thanks to the known relation the sum over the "critical" column lengths can be expressed in terms of a contour integral in which the integrand is built out of certain special functions.Comment: 41 pages, published versio

    Dimensionally Reduced SYM_4 as Solvable Matrix Quantum Mechanics

    Get PDF
    We study the quantum mechanical model obtained as a dimensional reduction of N=1 super Yang-Mills theory to a periodic light-cone "time". After mapping the theory to a cohomological field theory, the partition function (with periodic boundary conditions) regularized by a massive term appears to be equal to the partition function of the twisted matrix oscillator. We show that this partition function perturbed by the operator of the holonomy around the time circle is a tau function of Toda hierarchy. We solve the model in the large N limit and study the universal properties of the solution in the scaling limit of vanishing perturbation. We find in this limit a phase transition of Gross-Witten type.Comment: 29 pages, harvmac, 1 figure, formulas in appendices B and C correcte
    corecore