16,263 research outputs found

    Critical Pairs in Term Graph Rewriting

    Get PDF

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Coherent Presentations of Monoidal Categories

    Get PDF
    Presentations of categories are a well-known algebraic tool to provide descriptions of categories by means of generators, for objects and morphisms, and relations on morphisms. We generalize here this notion, in order to consider situations where the objects are considered modulo an equivalence relation, which is described by equational generators. When those form a convergent (abstract) rewriting system on objects, there are three very natural constructions that can be used to define the category which is described by the presentation: one consists in turning equational generators into identities (i.e. considering a quotient category), one consists in formally adding inverses to equational generators (i.e. localizing the category), and one consists in restricting to objects which are normal forms. We show that, under suitable coherence conditions on the presentation, the three constructions coincide, thus generalizing celebrated results on presentations of groups, and we extend those conditions to presentations of monoidal categories

    Towards a Maude tool for model checking temporal graph properties

    Get PDF
    We present our prototypical tool for the verification of graph transformation systems. The major novelty of our tool is that it provides a model checker for temporal graph properties based on counterpart semantics for quantified m-calculi. Our tool can be considered as an instantiation of our approach to counterpart semantics which allows for a neat handling of creation, deletion and merging in systems with dynamic structure. Our implementation is based on the object-based machinery of Maude, which provides the basics to deal with attributed graphs. Graph transformation systems are specified with term rewrite rules. The model checker evaluates logical formulae of second-order modal m-calculus in the automatically generated CounterpartModel (a sort of unfolded graph transition system) of the graph transformation system under study. The result of evaluating a formula is a set of assignments for each state, associating node variables to actual nodes

    Polytool: polynomial interpretations as a basis for termination analysis of Logic programs

    Full text link
    Our goal is to study the feasibility of porting termination analysis techniques developed for one programming paradigm to another paradigm. In this paper, we show how to adapt termination analysis techniques based on polynomial interpretations - very well known in the context of term rewrite systems (TRSs) - to obtain new (non-transformational) ter- mination analysis techniques for definite logic programs (LPs). This leads to an approach that can be seen as a direct generalization of the traditional techniques in termination analysis of LPs, where linear norms and level mappings are used. Our extension general- izes these to arbitrary polynomials. We extend a number of standard concepts and results on termination analysis to the context of polynomial interpretations. We also propose a constraint-based approach for automatically generating polynomial interpretations that satisfy the termination conditions. Based on this approach, we implemented a new tool, called Polytool, for automatic termination analysis of LPs
    corecore