9,548 research outputs found

    Formalising Confluence in PVS

    Get PDF
    Confluence is a critical property of computational systems which is related with determinism and non ambiguity and thus with other relevant computational attributes of functional specifications and rewriting system as termination and completion. Several criteria have been explored that guarantee confluence and their formalisations provide further interesting information. This work discusses topics and presents personal positions and views related with the formalisation of confluence properties in the Prototype Verification System PVS developed at our research group.Comment: In Proceedings DCM 2015, arXiv:1603.0053

    Closed nominal rewriting and efficiently computable nominal algebra equality

    Full text link
    We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    Constraint Handling Rules with Binders, Patterns and Generic Quantification

    Full text link
    Constraint Handling Rules provide descriptions for constraint solvers. However, they fall short when those constraints specify some binding structure, like higher-rank types in a constraint-based type inference algorithm. In this paper, the term syntax of constraints is replaced by λ\lambda-tree syntax, in which binding is explicit; and a new \nabla generic quantifier is introduced, which is used to create new fresh constants.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no PDF figure

    Confluence of Orthogonal Nominal Rewriting Systems Revisited

    Get PDF
    Nominal rewriting systems (Fernandez, Gabbay, Mackie, 2004; Fernandez, Gabbay, 2007) have been introduced as a new framework of higher-order rewriting systems based on the nominal approach (Gabbay, Pitts, 2002; Pitts, 2003), which deals with variable binding via permutations and freshness conditions on atoms. Confluence of orthogonal nominal rewriting systems has been shown in (Fernandez, Gabbay, 2007). However, their definition of (non-trivial) critical pairs has a serious weakness so that the orthogonality does not actually hold for most of standard nominal rewriting systems in the presence of binders. To overcome this weakness, we divide the notion of overlaps into the self-rooted and proper ones, and introduce a notion of alpha-stability which guarantees alpha-equivalence of peaks from the self-rooted overlaps. Moreover, we give a sufficient criterion for uniformity and alpha-stability. The new definition of orthogonality and the criterion offer a novel confluence condition effectively applicable to many standard nominal rewriting systems. We also report on an implementation of a confluence prover for orthogonal nominal rewriting systems based on our framework

    De Morgan Dual Nominal Quantifiers Modelling Private Names in Non-Commutative Logic

    Get PDF
    This paper explores the proof theory necessary for recommending an expressive but decidable first-order system, named MAV1, featuring a de Morgan dual pair of nominal quantifiers. These nominal quantifiers called `new' and `wen' are distinct from the self-dual Gabbay-Pitts and Miller-Tiu nominal quantifiers. The novelty of these nominal quantifiers is they are polarised in the sense that `new' distributes over positive operators while `wen' distributes over negative operators. This greater control of bookkeeping enables private names to be modelled in processes embedded as formulae in MAV1. The technical challenge is to establish a cut elimination result, from which essential properties including the transitivity of implication follow. Since the system is defined using the calculus of structures, a generalisation of the sequent calculus, novel techniques are employed. The proof relies on an intricately designed multiset-based measure of the size of a proof, which is used to guide a normalisation technique called splitting. The presence of equivariance, which swaps successive quantifiers, induces complex inter-dependencies between nominal quantifiers, additive conjunction and multiplicative operators in the proof of splitting. Every rule is justified by an example demonstrating why the rule is necessary for soundly embedding processes and ensuring that cut elimination holds.Comment: Submitted for review 18/2/2016; accepted CONCUR 2016; extended version submitted to journal 27/11/201

    Nominal narrowing

    Get PDF

    Nominal Narrowing

    Get PDF
    Nominal unification is a generalisation of first-order unification that takes alpha-equivalence into account. In this paper, we study nominal unification in the context of equational theories. We introduce nominal narrowing and design a general nominal E-unification procedure, which is sound and complete for a wide class of equational theories. We give examples of application

    A Theory of Explicit Substitutions with Safe and Full Composition

    Full text link
    Many different systems with explicit substitutions have been proposed to implement a large class of higher-order languages. Motivations and challenges that guided the development of such calculi in functional frameworks are surveyed in the first part of this paper. Then, very simple technology in named variable-style notation is used to establish a theory of explicit substitutions for the lambda-calculus which enjoys a whole set of useful properties such as full composition, simulation of one-step beta-reduction, preservation of beta-strong normalisation, strong normalisation of typed terms and confluence on metaterms. Normalisation of related calculi is also discussed.Comment: 29 pages Special Issue: Selected Papers of the Conference "International Colloquium on Automata, Languages and Programming 2008" edited by Giuseppe Castagna and Igor Walukiewic

    Graphical Encoding of a Spatial Logic for the pi-Calculus

    Get PDF
    This paper extends our graph-based approach to the verification of spatial properties of π-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of π-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula
    corecore