44,969 research outputs found

    Similarity-Aware Spectral Sparsification by Edge Filtering

    Full text link
    In recent years, spectral graph sparsification techniques that can compute ultra-sparse graph proxies have been extensively studied for accelerating various numerical and graph-related applications. Prior nearly-linear-time spectral sparsification methods first extract low-stretch spanning tree from the original graph to form the backbone of the sparsifier, and then recover small portions of spectrally-critical off-tree edges to the spanning tree to significantly improve the approximation quality. However, it is not clear how many off-tree edges should be recovered for achieving a desired spectral similarity level within the sparsifier. Motivated by recent graph signal processing techniques, this paper proposes a similarity-aware spectral graph sparsification framework that leverages efficient spectral off-tree edge embedding and filtering schemes to construct spectral sparsifiers with guaranteed spectral similarity (relative condition number) level. An iterative graph densification scheme is introduced to facilitate efficient and effective filtering of off-tree edges for highly ill-conditioned problems. The proposed method has been validated using various kinds of graphs obtained from public domain sparse matrix collections relevant to VLSI CAD, finite element analysis, as well as social and data networks frequently studied in many machine learning and data mining applications

    Estimation of instrinsic dimension via clustering

    Full text link
    The problem of estimating the intrinsic dimension of a set of points in high dimensional space is a critical issue for a wide range of disciplines, including genomics, finance, and networking. Current estimation techniques are dependent on either the ambient or intrinsic dimension in terms of computational complexity, which may cause these methods to become intractable for large data sets. In this paper, we present a clustering-based methodology that exploits the inherent self-similarity of data to efficiently estimate the intrinsic dimension of a set of points. When the data satisfies a specified general clustering condition, we prove that the estimated dimension approaches the true Hausdorff dimension. Experiments show that the clustering-based approach allows for more efficient and accurate intrinsic dimension estimation compared with all prior techniques, even when the data does not conform to obvious self-similarity structure. Finally, we present empirical results which show the clustering-based estimation allows for a natural partitioning of the data points that lie on separate manifolds of varying intrinsic dimension

    Optimal Topology Design for Disturbance Minimization in Power Grids

    Full text link
    The transient response of power grids to external disturbances influences their stable operation. This paper studies the effect of topology in linear time-invariant dynamics of different power grids. For a variety of objective functions, a unified framework based on H2H_2 norm is presented to analyze the robustness to ambient fluctuations. Such objectives include loss reduction, weighted consensus of phase angle deviations, oscillations in nodal frequency, and other graphical metrics. The framework is then used to study the problem of optimal topology design for robust control goals of different grids. For radial grids, the problem is shown as equivalent to the hard "optimum communication spanning tree" problem in graph theory and a combinatorial topology construction is presented with bounded approximation gap. Extended to loopy (meshed) grids, a greedy topology design algorithm is discussed. The performance of the topology design algorithms under multiple control objectives are presented on both loopy and radial test grids. Overall, this paper analyzes topology design algorithms on a broad class of control problems in power grid by exploring their combinatorial and graphical properties.Comment: 6 pages, 3 figures, a version of this work will appear in ACC 201
    • …
    corecore