171,529 research outputs found

    Event-Cloud Platform to Support Decision- Making in Emergency Management

    Full text link
    The challenge of this paper is to underline the capability of an Event-Cloud Platform to support efficiently an emergency situation. We chose to focus on a nuclear crisis use case. The proposed approach consists in modeling the business processes of crisis response on the one hand, and in supporting the orchestration and execution of these processes by using an Event-Cloud Platform on the other hand. This paper shows how the use of Event-Cloud techniques can support crisis management stakeholders by automatizing non-value added tasks and by directing decision- makers on what really requires their capabilities of choice. If Event-Cloud technology is a very interesting and topical subject, very few research works have considered this to improve emergency management. This paper tries to fill this gap by considering and applying these technologies on a nuclear crisis use-case

    Smartphone sensing platform for emergency management

    Full text link
    The increasingly sophisticated sensors supported by modern smartphones open up novel research opportunities, such as mobile phone sensing. One of the most challenging of these research areas is context-aware and activity recognition. The SmartRescue project takes advantage of smartphone sensing, processing and communication capabilities to monitor hazards and track people in a disaster. The goal is to help crisis managers and members of the public in early hazard detection, prediction, and in devising risk-minimizing evacuation plans when disaster strikes. In this paper we suggest a novel smartphone-based communication framework. It uses specific machine learning techniques that intelligently process sensor readings into useful information for the crisis responders. Core to the framework is a content-based publish-subscribe mechanism that allows flexible sharing of sensor data and computation results. We also evaluate a preliminary implementation of the platform, involving a smartphone app that reads and shares mobile phone sensor data for activity recognition.Comment: 11th International Conference on Information Systems for Crisis Response and Management ISCRAM2014 (2014

    Working towards an Improved Monitoring Infrastructure to support Disaster Management, Humanitarian Relief and Civil Security

    Get PDF
    Within this paper experiences and results from the work in the context of the European Initiative on Global Monitoring for Environment and Security (GMES) as they were gathered within the German Remote Sensing Data Center (DFD) are reported. It is described how data flows, analysis methods and information networks can be improved to allow better and faster access to remote sensing data and information in order to support the management of crisis situations. This refers to all phases of a crisis or disaster situation, including preparedness, response and recovery. Above the infrastructure and information flow elements, example cases of different crisis situations in the context of natural disasters, humanitarian relief activities and civil security are discussed. This builds on the experiences gained during the very active participation in the network of Excellence on Global Monitoring for Stability and Security (GMOSS), the GMES Service Element RESPOND, focussing on Humanitarian Relief Support and supporting the International Charter on Space and Major Disasters as well as while linking closely to national, European and international entities related to civil human security. It is suggested to further improve the network of national and regional centres of excellence in this context in order to improve local, regional and global monitoring capacities. Only when optimum interoperability and information flow can be achieved among systems and data providers on one hand side and the decision makers on the other, efficient monitoring and analysis capacities can be established successfully

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c
    corecore