202,210 research outputs found

    Using GIS to understand the relationship of community factors and police shootings in the United States: a First Look

    Get PDF
    While many municipalities and counties have good collections of crime data, the lack of availability of national data limits the potential research on gun violence related to officer-involved shootings. Using an open source data collection data model, a data repository of police shootings is being created (SHOT - Statistics Help Officer Training). With incident location information, this paper takes a “first look” at understanding community factors and their relationship to police “use of force”. The paper will briefly describe how GIS has been used to study crime, the problem related to data and data collection for police shootings and the SHOT method of data collection. Preliminary results of a GIS analysis of incidents, income, diversity and education will be described

    Evaluation of low-template DNA profiles using peak heights

    Get PDF
    In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA profiles have moved from using only presence/absence information about allelic peaks in an electropherogram, to quantitative use of peak heights. This is challenging because peak heights are very variable and affected by a number of factors. We present a new peak-height model with important novel features, including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-source R code likeLTD. We apply it to 108 laboratory-generated crime-scene profiles and demonstrate techniques of model validation that are novel in the field. We use the results to explore the benefits of modeling peak heights, finding that it is not always advantageous, and to assess the merits of pre-extraction replication. We also introduce an approximation that can reduce computational complexity when there are multiple low-level contributors who are not of interest to the investigation, and we present a simple approximate adjustment for linkage between loci, making it possible to accommodate linkage when evaluating complex DNA profiles

    A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety

    Full text link
    [EN] This article shows a novel geo-visualization method of dynamic spatiotemporal data that allows mobility and concentration of criminal activity to be study. The method was developed using, only and significantly, real data of Santiago de Cali (Colombia), collected by the Colombian National Police (PONAL). This method constitutes a tool that allows criminal influx to be analyzed by concentration, zone, time slot and date. In addition to the field experience of police commanders, it allows patterns of criminal activity to be detected, thereby enabling a better distribution and management of police resources allocated to crime deterrence, prevention and control. Additionally, it may be applied to the concepts of safe city and smart city of the PONAL within the architecture of Command and Control System (C2S) of Command and Control Centers for Public Safety. Furthermore, it contributes to a better situational awareness and improves the future projection, agility, efficiency and decision-making processes of police officers, which are all essential for fulfillment of police missions against crime. Finally, this was developed using an open source software, it can be adapted to any other city, be used with real-time data and be implemented, if necessary, with the geographic software of any other C2S.This work was co-funded by the European Commission as part of H2020 call SEC-12-FCT-2016-thrtopic3 under the project VICTORIA (No. 740754). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. The authors would like to thank Colombian National Police and its Office of Telematics for their support on development of this project.Salcedo-González, ML.; Suarez-Paez, JE.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE. (2020). A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety. ISPRS International Journal of Geo-Information. 9(3):1-17. https://doi.org/10.3390/ijgi9030160S11793Lacinák, M., & Ristvej, J. (2017). Smart City, Safety and Security. Procedia Engineering, 192, 522-527. doi:10.1016/j.proeng.2017.06.090Neumann, M., & Elsenbroich, C. (2016). Introduction: the societal dimensions of organized crime. Trends in Organized Crime, 20(1-2), 1-15. doi:10.1007/s12117-016-9294-zPhillips, P., & Lee, I. (2012). Mining co-distribution patterns for large crime datasets. Expert Systems with Applications, 39(14), 11556-11563. doi:10.1016/j.eswa.2012.03.071Linning, S. J. (2015). Crime seasonality and the micro-spatial patterns of property crime in Vancouver, BC and Ottawa, ON. Journal of Criminal Justice, 43(6), 544-555. doi:10.1016/j.jcrimjus.2015.05.007Spicer, V., & Song, J. (2017). The impact of transit growth on the perception of crime. Journal of Environmental Psychology, 54, 151-159. doi:10.1016/j.jenvp.2017.09.002Beland, L.-P., & Brent, D. A. (2018). Traffic and crime. Journal of Public Economics, 160, 96-116. doi:10.1016/j.jpubeco.2018.03.002Newspaper of National Circulation in Colombia, E.T. Robos en Trancones en El Tintal—Bogotá—.ELTIEMPO.COM https://www.eltiempo.com/bogota/robos-en-trancones-en-el-tintal-168226Nueva Modalidad de Atraco a Conductores en Los Trancones de Bogotá|ELESPECTADOR.COM http://www.elespectador.com/noticias/bogota/nueva-modalidad-de-atraco-conductores-en-los-trancones-de-bogota-articulo-697716Carrillo, P. E., Lopez-Luzuriaga, A., & Malik, A. S. (2018). Pollution or crime: The effect of driving restrictions on criminal activity. Journal of Public Economics, 164, 50-69. doi:10.1016/j.jpubeco.2018.05.007Twinam, T. (2017). Danger zone: Land use and the geography of neighborhood crime. Journal of Urban Economics, 100, 104-119. doi:10.1016/j.jue.2017.05.006Sadler, R. C., Pizarro, J., Turchan, B., Gasteyer, S. P., & McGarrell, E. F. (2017). Exploring the spatial-temporal relationships between a community greening program and neighborhood rates of crime. Applied Geography, 83, 13-26. doi:10.1016/j.apgeog.2017.03.017Roth, R. E., Ross, K. S., Finch, B. G., Luo, W., & MacEachren, A. M. (2013). Spatiotemporal crime analysis in U.S. law enforcement agencies: Current practices and unmet needs. Government Information Quarterly, 30(3), 226-240. doi:10.1016/j.giq.2013.02.001Sustainable Development Goals|UNDP https://www.undp.org/content/undp/en/home/sustainable-development-goals.htmlGiménez-Santana, A., Caplan, J. M., & Drawve, G. (2018). Risk Terrain Modeling and Socio-Economic Stratification: Identifying Risky Places for Violent Crime Victimization in Bogotá, Colombia. European Journal on Criminal Policy and Research, 24(4), 417-431. doi:10.1007/s10610-018-9374-5Kim, S., Jeong, S., Woo, I., Jang, Y., Maciejewski, R., & Ebert, D. S. (2018). Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information. IEEE Transactions on Visualization and Computer Graphics, 24(3), 1287-1300. doi:10.1109/tvcg.2017.2666146Kounadi, O., & Leitner, M. (2014). Spatial Information Divergence: Using Global and Local Indices to Compare Geographical Masks Applied to Crime Data. Transactions in GIS, 19(5), 737-757. doi:10.1111/tgis.12125Khalid, S., Shoaib, F., Qian, T., Rui, Y., Bari, A. I., Sajjad, M., … Wang, J. (2017). Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad. Applied Spatial Analysis and Policy, 11(3), 599-622. doi:10.1007/s12061-017-9230-xLopez-Cuevas, A., Medina-Perez, M. A., Monroy, R., Ramirez-Marquez, J. E., & Trejo, L. A. (2018). FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness. IEEE Transactions on Affective Computing, 9(3), 372-382. doi:10.1109/taffc.2017.2741478Xue, Y., & Brown, D. E. (2006). Spatial analysis with preference specification of latent decision makers for criminal event prediction. Decision Support Systems, 41(3), 560-573. doi:10.1016/j.dss.2004.06.007Nakaya, T., & Yano, K. (2010). Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Transactions in GIS, 14(3), 223-239. doi:10.1111/j.1467-9671.2010.01194.xAnuar, N. B., & Yap, B. W. (2018). Data Visualization of Violent Crime Hotspots in Malaysia. Soft Computing in Data Science, 350-363. doi:10.1007/978-981-13-3441-2_27Malik, A., Maciejewski, R., Towers, S., McCullough, S., & Ebert, D. S. (2014). Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1863-1872. doi:10.1109/tvcg.2014.2346926Arietta, S. M., Efros, A. A., Ramamoorthi, R., & Agrawala, M. (2014). City Forensics: Using Visual Elements to Predict Non-Visual City Attributes. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2624-2633. doi:10.1109/tvcg.2014.2346446Hu, Y., Wang, F., Guin, C., & Zhu, H. (2018). A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation. Applied Geography, 99, 89-97. doi:10.1016/j.apgeog.2018.08.001Yang, D., Heaney, T., Tonon, A., Wang, L., & Cudré-Mauroux, P. (2017). CrimeTelescope: crime hotspot prediction based on urban and social media data fusion. World Wide Web, 21(5), 1323-1347. doi:10.1007/s11280-017-0515-4ToppiReddy, H. K. R., Saini, B., & Mahajan, G. (2018). Crime Prediction & Monitoring Framework Based on Spatial Analysis. Procedia Computer Science, 132, 696-705. doi:10.1016/j.procs.2018.05.075Devia, N., & Weber, R. (2013). Generating crime data using agent-based simulation. Computers, Environment and Urban Systems, 42, 26-41. doi:10.1016/j.compenvurbsys.2013.09.001Kuo, P.-F., Lord, D., & Walden, T. D. (2013). Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography, 30, 138-148. doi:10.1016/j.jtrangeo.2013.04.006Camacho-Collados, M., & Liberatore, F. (2015). A Decision Support System for predictive police patrolling. Decision Support Systems, 75, 25-37. doi:10.1016/j.dss.2015.04.012Kagawa, T., Saiki, S., & Nakamura, M. (2019). Analyzing street crimes in Kobe city using PRISM. International Journal of Web Information Systems, 15(2), 183-200. doi:10.1108/ijwis-04-2018-0032Jentner, W., Sacha, D., Stoffel, F., Ellis, G., Zhang, L., & Keim, D. A. (2018). Making machine intelligence less scary for criminal analysts: reflections on designing a visual comparative case analysis tool. The Visual Computer, 34(9), 1225-1241. doi:10.1007/s00371-018-1483-0Suarez-Paez, J., Salcedo-Gonzalez, M., Esteve, M., Gómez, J. A., Palau, C., & Pérez-Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems, 12(1), 123. doi:10.2991/ijcis.2018.25905186Suarez-Paez, J., Salcedo-Gonzalez, M., Climente, A., Esteve, M., Gómez, J. A., Palau, C. E., & Pérez-Llopis, I. (2019). A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information, 10(12), 365. doi:10.3390/info10120365Esteve, M., Perez-Llopis, I., & Palau, C. E. (2013). Friendly Force Tracking COTS solution. IEEE Aerospace and Electronic Systems Magazine, 28(1), 14-21. doi:10.1109/maes.2013.6470440Esteve, M., Perez-Llopis, I., Hernandez-Blanco, L. E., Palau, C. E., & Carvajal, F. (2007). SIMACOP: Small Units Management C4ISR System. Multimedia and Expo, 2007 IEEE International Conference on. doi:10.1109/icme.2007.4284862OpenStreetMap http://www.openstreetmap.or

    Digital Architecture as Crime Control

    Get PDF
    This paper explains how theories of realspace architecture inform the prevention of computer crime. Despite the prevalence of the metaphor, architects in realspace and cyberspace have not talked to one another. There is a dearth of literature about digital architecture and crime altogether, and the realspace architectural literature on crime prevention is often far too soft for many software engineers. This paper will suggest the broad brushstrokes of potential design solutions to cybercrime, and in the course of so doing, will pose severe criticisms of the White House\u27s recent proposals on cybersecurity. The paper begins by introducing four concepts of realspace crime prevention through architecture. Design should: (1) create opportunities for natural surveillance, meaning its visibility and susceptibility to monitoring by residents, neighbors, and bystanders; (2) instill a sense of territoriality so that residents develop proprietary attitudes and outsiders feel deterred from entering a private space; (3) build communities and avoid social isolation; and (4) protect targets of crime. There are digital analogues to each goal. Natural-surveillance principles suggest new virtues of open-source platforms, such as Linux, and territoriality outlines a strong case for moving away from digital anonymity towards psuedonymity. The goal of building communities will similarly expose some new advantages for the original, and now eroding, end-to-end design of the Internet. An understanding of architecture and target prevention will illuminate why firewalls at end points will more effectively guarantee security than will attempts to bundle security into the architecture of the Net. And, in total, these architectural lessons will help us chart an alternative course to the federal government\u27s tepid approach to computer crime. By leaving the bulk of crime prevention to market forces, the government will encourage private barricades to develop - the equivalent of digital gated communities - with terrible consequences for the Net in general and interconnectivity in particular
    • …
    corecore