836 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Adaptive Capacity Management in Bluetooth Networks

    Get PDF

    Nash Equilibria of Packet Forwarding Strategies in Wireless Ad Hoc Networks

    Get PDF
    In self-organizing ad hoc networks, all the networking functions rely on the contribution of the participants. As a basic example, nodes have to forward packets for each other in order to enable multi-hop communication. In recent years, incentive mechanisms have been proposed to give nodes incentive to cooperate, especially in packet forwarding. However, the need for these mechanisms was not formally justified. In this paper, we address the problem of whether cooperation can exist without incentive mechanisms. We propose a model based on game theory and graph theory to investigate equilibrium conditions of packet forwarding strategies. We prove theorems about the equilibrium conditions for both cooperative and non-cooperative strategies. We perform simulations to estimate the probability that the conditions for a cooperative equilibrium hold in randomly generated network scenarios. As the problem is involved, we deliberately restrict ourselves to a static configuration. We conclude that in static ad hoc networks - where the relationships between the nodes are likely to be stable - cooperation needs to be encouraged. forwarding. However, the need for these mechanisms was not formally justified. In this paper, we address the problem of whether cooperation can exist \emph{without} incentive mechanisms. We propose a model based on game theory and graph theory to investigate equilibrium conditions of packet forwarding strategies. We prove theorems about the equilibrium conditions for both cooperative and non-cooperative strategies. We perform simulations to estimate the probability that the conditions for a cooperative equilibrium hold in randomly generated network scenarios. As the problem is involved, we deliberately restrict ourselves to a static configuration. We conclude that in static ad hoc networks -- where the relationships between the nodes are likely to be stable -- cooperation needs to be encouraged
    • …
    corecore