5,411 research outputs found

    Improving Accuracy of Virtual Machine Power Model by Relative-PMC Based Heuristic Scheduling

    Get PDF
    Conventional utilization-based power model is effective for measuring the power consumption of physical machines. However, in virtualized environments its accuracy cannot be guaranteed because of the recursive resource accessing among multiple virtual machines. In this paper, we present a novel virtual machine scheduling algorithm, which uses Performance-Monitor-Counter as heuristic information to compensate the recursive power consumption. Theoretical analysis indicates that the error of virtual machine power model can be quantitative bounded when using the proposed scheduling algorithm. Extensive experiments based on standard benchmarks show that the error of virtual machine power measurements can be significantly reduced comparing with the classic credit-based scheduling algorithm

    SLO-aware Colocation of Data Center Tasks Based on Instantaneous Processor Requirements

    Full text link
    In a cloud data center, a single physical machine simultaneously executes dozens of highly heterogeneous tasks. Such colocation results in more efficient utilization of machines, but, when tasks' requirements exceed available resources, some of the tasks might be throttled down or preempted. We analyze version 2.1 of the Google cluster trace that shows short-term (1 second) task CPU usage. Contrary to the assumptions taken by many theoretical studies, we demonstrate that the empirical distributions do not follow any single distribution. However, high percentiles of the total processor usage (summed over at least 10 tasks) can be reasonably estimated by the Gaussian distribution. We use this result for a probabilistic fit test, called the Gaussian Percentile Approximation (GPA), for standard bin-packing algorithms. To check whether a new task will fit into a machine, GPA checks whether the resulting distribution's percentile corresponding to the requested service level objective, SLO is still below the machine's capacity. In our simulation experiments, GPA resulted in colocations exceeding the machines' capacity with a frequency similar to the requested SLO.Comment: Author's version of a paper published in ACM SoCC'1
    • …
    corecore