83 research outputs found

    Credal Networks under Epistemic Irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have long been perceived as very hard to work with, both theoretically and computationally. The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and present several new theoretical results. Most importantly, we explain how these results can be combined to allow for the design of recursive inference methods. We provide numerous concrete examples of how this can be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects, including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations, the axiomatic status of graphoid properties, and the difference between updating and conditioning

    Reintroducing credal networks under epistemic irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised version of a Bayesian network that loosens its two main building blocks. On the one hand, the local probabilities do not have to be specified exactly. On the other hand, the assumptions of independence do not have to hold exactly. Conceptually, these credal networks are elegant and useful. However, in practice, they have long remained very hard to work with, both theoretically and computationally. This paper provides a general introduction to this type of credal networks and presents some promising new theoretical developments that were recently proved using sets of desirable gambles and lower previsions. We explain these developments in terms of probabilities and expectations, thereby making them more easily accessible to the Bayesian network community

    Credal networks under epistemic irrelevance using sets of desirable gambles

    Get PDF
    We present a new approach to credal networks, which are graphical models that generalise Bayesian nets to deal with imprecise probabilities. Instead of applying the commonly used notion of strong independence, we replace it by the weaker notion of epistemic irrelevance. We show how assessments of epistemic irrelevance allow us to construct a global model out of given local uncertainty models, leading to an intuitive expression for the so-called irrelevant natural extension of a network. In contrast with Cozman (2000), who introduced this notion in terms of credal sets, our main results are presented using the language of sets of desirable gambles. This has allowed us to derive a number of useful properties of the irrelevant natural extension. It has powerful marginalisation properties and satisfies all graphoid properties but symmetry, both in their direct and reverse forms

    Epistemic irrelevance in credal networks : the case of imprecise Markov trees

    Get PDF
    We replace strong independence in credal networks with the weaker notion of epistemic irrelevance. Focusing on directed trees, we show how to combine local credal sets into a global model, and we use this to construct and justify an exact message-passing algorithm that computes updated beliefs for a variable in the tree. The algorithm, which is essentially linear in the number of nodes, is formulated entirely in terms of coherent lower previsions. We supply examples of the algorithm's operation, and report an application to on-line character recognition that illustrates the advantages of our model for prediction

    Epistemic irrelevance in credal nets: the case of imprecise Markov trees

    Get PDF
    We focus on credal nets, which are graphical models that generalise Bayesian nets to imprecise probability. We replace the notion of strong independence commonly used in credal nets with the weaker notion of epistemic irrelevance, which is arguably more suited for a behavioural theory of probability. Focusing on directed trees, we show how to combine the given local uncertainty models in the nodes of the graph into a global model, and we use this to construct and justify an exact message-passing algorithm that computes updated beliefs for a variable in the tree. The algorithm, which is linear in the number of nodes, is formulated entirely in terms of coherent lower previsions, and is shown to satisfy a number of rationality requirements. We supply examples of the algorithm's operation, and report an application to on-line character recognition that illustrates the advantages of our approach for prediction. We comment on the perspectives, opened by the availability, for the first time, of a truly efficient algorithm based on epistemic irrelevance.Comment: 29 pages, 5 figures, 1 tabl

    Recent advances in imprecise-probabilistic graphical models

    Get PDF
    We summarise and provide pointers to recent advances in inference and identification for specific types of probabilistic graphical models using imprecise probabilities. Robust inferences can be made in so-called credal networks when the local models attached to their nodes are imprecisely specified as conditional lower previsions, by using exact algorithms whose complexity is comparable to that for the precise-probabilistic counterparts

    Independent natural extension for sets of desirable gambles

    Get PDF
    We investigate how to combine a number of marginal coherent sets of desirable gambles into a joint set using the properties of epistemic irrelevance and independence. We provide formulas for the smallest such joint, called their independent natural extension, and study its main properties. The independent natural extension of maximal sets of gambles allows us to define the strong product of sets of desirable gambles. Finally, we explore an easy way to generalise these results to also apply for the conditional versions of epistemic irrelevance and independence
    corecore