520 research outputs found

    Learning Credal Sum-Product Networks

    Get PDF
    Probabilistic representations, such as Bayesian and Markov networks, are fundamental to much of statistical machine learning. Thus, learning probabilistic representations directly from data is a deep challenge, the main computational bottleneck being inference that is intractable. Tractable learning is a powerful new paradigm that attempts to learn distributions that support efficient probabilistic querying. By leveraging local structure, representations such as sum-product networks (SPNs) can capture high tree-width models with many hidden layers, essentially a deep architecture, while still admitting a range of probabilistic queries to be computable in time polynomial in the network size. While the progress is impressive, numerous data sources are incomplete, and in the presence of missing data, structure learning methods nonetheless revert to single distributions without characterizing the loss in confidence. In recent work, credal sum-product networks, an imprecise extension of sum-product networks, were proposed to capture this robustness angle. In this work, we are interested in how such representations can be learnt and thus study how the computational machinery underlying tractable learning and inference can be generalized for imprecise probabilities.Comment: Accepted to AKBC 202

    Beyond tree-shaped credal sum-product networks

    Get PDF

    Probabilistic Logic Programming with Beta-Distributed Random Variables

    Full text link
    We enable aProbLog---a probabilistic logical programming approach---to reason in presence of uncertain probabilities represented as Beta-distributed random variables. We achieve the same performance of state-of-the-art algorithms for highly specified and engineered domains, while simultaneously we maintain the flexibility offered by aProbLog in handling complex relational domains. Our motivation is that faithfully capturing the distribution of probabilities is necessary to compute an expected utility for effective decision making under uncertainty: unfortunately, these probability distributions can be highly uncertain due to sparse data. To understand and accurately manipulate such probability distributions we need a well-defined theoretical framework that is provided by the Beta distribution, which specifies a distribution of probabilities representing all the possible values of a probability when the exact value is unknown.Comment: Accepted for presentation at AAAI 201

    Comparing stochastic design decision belief models : pointwise versus interval probabilities.

    Get PDF
    Decision support systems can either directly support a product designer or support an agent operating within a multi-agent system (MAS). Stochastic based decision support systems require an underlying belief model that encodes domain knowledge. The underlying supporting belief model has traditionally been a probability distribution function (PDF) which uses pointwise probabilities for all possible outcomes. This can present a challenge during the knowledge elicitation process. To overcome this, it is proposed to test the performance of a credal set belief model. Credal sets (sometimes also referred to as p-boxes) use interval probabilities rather than pointwise probabilities and therefore are more easier to elicit from domain experts. The PDF and credal set belief models are compared using a design domain MAS which is able to learn, and thereby refine, the belief model based on its experience. The outcome of the experiment illustrates that there is no significant difference between the PDF based and credal set based belief models in the performance of the MAS

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B
    corecore