49 research outputs found

    Learning Credal Sum-Product Networks

    Get PDF
    Probabilistic representations, such as Bayesian and Markov networks, are fundamental to much of statistical machine learning. Thus, learning probabilistic representations directly from data is a deep challenge, the main computational bottleneck being inference that is intractable. Tractable learning is a powerful new paradigm that attempts to learn distributions that support efficient probabilistic querying. By leveraging local structure, representations such as sum-product networks (SPNs) can capture high tree-width models with many hidden layers, essentially a deep architecture, while still admitting a range of probabilistic queries to be computable in time polynomial in the network size. While the progress is impressive, numerous data sources are incomplete, and in the presence of missing data, structure learning methods nonetheless revert to single distributions without characterizing the loss in confidence. In recent work, credal sum-product networks, an imprecise extension of sum-product networks, were proposed to capture this robustness angle. In this work, we are interested in how such representations can be learnt and thus study how the computational machinery underlying tractable learning and inference can be generalized for imprecise probabilities.Comment: Accepted to AKBC 202

    Adams Conditioning and Likelihood Ratio Transfer Mediated Inference

    Get PDF

    Zero-shot Task Preference Addressing Enabled by Imprecise Bayesian Continual Learning

    Full text link
    Like generic multi-task learning, continual learning has the nature of multi-objective optimization, and therefore faces a trade-off between the performance of different tasks. That is, to optimize for the current task distribution, it may need to compromise performance on some tasks to improve on others. This means there exist multiple models that are each optimal at different times, each addressing a distinct task-performance trade-off. Researchers have discussed how to train particular models to address specific preferences on these trade-offs. However, existing algorithms require additional sample overheads -- a large burden when there are multiple, possibly infinitely many, preferences. As a response, we propose Imprecise Bayesian Continual Learning (IBCL). Upon a new task, IBCL (1) updates a knowledge base in the form of a convex hull of model parameter distributions and (2) obtains particular models to address preferences with zero-shot. That is, IBCL does not require any additional training overhead to construct preference-addressing models from its knowledge base. We show that models obtained by IBCL have guarantees in identifying the preferred parameters. Moreover, experiments show that IBCL is able to locate the Pareto set of parameters given a preference, maintain similar to better performance than baseline methods, and significantly reduce training overhead via zero-shot preference addressing

    Generalized belief change with imprecise probabilities and graphical models

    Get PDF
    We provide a theoretical investigation of probabilistic belief revision in complex frameworks, under extended conditions of uncertainty, inconsistency and imprecision. We motivate our kinematical approach by specializing our discussion to probabilistic reasoning with graphical models, whose modular representation allows for efficient inference. Most results in this direction are derived from the relevant work of Chan and Darwiche (2005), that first proved the inter-reducibility of virtual and probabilistic evidence. Such forms of information, deeply distinct in their meaning, are extended to the conditional and imprecise frameworks, allowing further generalizations, e.g. to experts' qualitative assessments. Belief aggregation and iterated revision of a rational agent's belief are also explored

    Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods

    Full text link
    The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.Comment: 59 page
    corecore