2,504 research outputs found

    Applying MDE tools to defining domain specific languages for model management

    Get PDF
    In the model driven engineering (MDE), modeling languages play a central role. They range from the most generic languages such as UML, to more individual ones, called domain-specific modeling languages (DSML). These languages are used to create and manage models and must accompany them throughout their life cycle and evolution. In this paper we propose a domain-specific language for model management, to facilitate the user's task, developed with techniques and tools used in the MDE paradigm.Fil: Pérez, Gabriela. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; ArgentinaFil: Irazábal, Jerónimo. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pons, Claudia Fabiana. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Giandini, Roxana Silvia. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentin

    Towards a Domain Specific Language for a Scene Graph based Robotic World Model

    Full text link
    Robot world model representations are a vital part of robotic applications. However, there is no support for such representations in model-driven engineering tool chains. This work proposes a novel Domain Specific Language (DSL) for robotic world models that are based on the Robot Scene Graph (RSG) approach. The RSG-DSL can express (a) application specific scene configurations, (b) semantic scene structures and (c) inputs and outputs for the computational entities that are loaded into an instance of a world model.Comment: Presented at DSLRob 2013 (arXiv:cs/1312.5952

    Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use

    Get PDF
    The creation of Domain Specific Languages(DSL) counts as one of the main goals in the field of Model-Driven Software Engineering (MDSE). The main purpose of these DSLs is to facilitate the manipulation of domain specific concepts, by providing developers with specific tools for their domain of expertise. A natural approach to create DSLs is to reuse existing modeling standards and tools. In this area, the Eclipse Modeling Framework (EMF) has rapidly become the defacto standard in the MDSE for building Domain Specific Languages (DSL) and tools based on generative techniques. However, the use of EMF generated tools in domains like Internet of Things (IoT), Cloud Computing or Models@Runtime reaches several limitations. In this paper, we identify several properties the generated tools must comply with to be usable in other domains than desktop-based software systems. We then challenge EMF on these properties and describe our approach to overcome the limitations. Our approach, implemented in the Kevoree Modeling Framework (KMF), is finally evaluated according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014

    A Framework for Model-Driven Scientific Workflow Engineering

    Get PDF
    So-called scientific workflows are one important means in the context of data-intensive science for reliable and efficient scientific data processing in distributed computing infrastructures such as Grids. Scientific Workflow Management Systems (SWfMS) help scientists model and run scientific workflows, whereas a domain-specific layer for workflow modeling by a scientist and a technical layer for automated workflow execution can be distinguished. Initially, many SWfMS were developed from scratch using custom workflow technologies languages without application of already existing and established business workflow technologies. Among the reasons were different life cycles for scientific and business workflows as well as incompatible interfaces and communication protocols of the respective execution infrastructures. Meanwhile, several business IT infrastructures have evolved to serviceoriented architectures (SOAs), for which many Web service standards and technologies have been developed. The Web Services Business Process Execution Language (BPEL), for example, is a well-accepted standard for the implementation and execution of business workflows in SOAs. The SOA architecture pattern has been adopted in scientific IT infrastructures by so-called Service Grids based on existing standards and technologies. Due to this development, BPEL is also suitable for the execution of scientific workflows at the technical layer, which has been elaborated on in many publications and projects. However, BPEL is a workflow language for IT experts and is originally not suited for scientific workflow modeling by a scientist at the domain-specific layer. A domain-specific abstraction of BPEL is therefore required that can be specifically tailored for scientific workflow modeling as well as a corresponding mapping to the technical layer. These challenges of the domain-specific abstraction and the mapping are addressed in this thesis with the help of the Business Process Model and Notation (BPMN) standard and technologies from Model-Driven Software Development (MDSD). Therefore, the MoDFlow approach for Model-Driven Scientific WorkFlow Engineering is presented to map domain-specific scientific workflow models via a BPMN-based intermediate layer to an executable workflow model. The intermediate layer is specified by MoDFlow.BPMN, which is a BPMN metamodel subset with custom extensions for the scientific domain. MoDFlow.BPMN2BPEL defines three consecutive transformation steps to map MoDFlow.BPMN to BPEL for workflow execution. Furthermore, different methods to utilize and extend MoDFlow.BPMN and MoDFlow.BPMN2BPEL are described in the MoDFlow approach, in which the definition of so-called domain-specific languages (DSLs) for the modeling of scientific workflows at the domain-specific layer is focused. The MoDFlow framework is an implementation of the MoDFlow approach, which is based on the Eclipse Modeling Framework (EMF). The MoDFlow framework is evaluated in three application scenarios, in which different utilization and extension mechanisms are examined. The first two application scenarios investigate the technical feasibility of the approach and support scientific workflows with parameter sweeps that are executed on a Grid infrastructure. The third application scenario has been conducted in collaboration with the PubFlow project, which aims to create an infrastructure to model and execute data publication workflows. Based on the Xtext framework, a textual DSL and a corresponding language infrastructure is defined for this purpose that supports developers in creating data publication workflows. This scenario aims to illustrate the practicability of the MoDFlow framework. PubFlow currently plans to implement an additional graphical DSL based on the BPMN notation and a corresponding workflow editor for scientists

    HybridMDSD: Multi-Domain Engineering with Model-Driven Software Development using Ontological Foundations

    Get PDF
    Software development is a complex task. Executable applications comprise a mutlitude of diverse components that are developed with various frameworks, libraries, or communication platforms. The technical complexity in development retains resources, hampers efficient problem solving, and thus increases the overall cost of software production. Another significant challenge in market-driven software engineering is the variety of customer needs. It necessitates a maximum of flexibility in software implementations to facilitate the deployment of different products that are based on one single core. To reduce technical complexity, the paradigm of Model-Driven Software Development (MDSD) facilitates the abstract specification of software based on modeling languages. Corresponding models are used to generate actual programming code without the need for creating manually written, error-prone assets. Modeling languages that are tailored towards a particular domain are called domain-specific languages (DSLs). Domain-specific modeling (DSM) approximates technical solutions with intentional problems and fosters the unfolding of specialized expertise. To cope with feature diversity in applications, the Software Product Line Engineering (SPLE) community provides means for the management of variability in software products, such as feature models and appropriate tools for mapping features to implementation assets. Model-driven development, domain-specific modeling, and the dedicated management of variability in SPLE are vital for the success of software enterprises. Yet, these paradigms exist in isolation and need to be integrated in order to exhaust the advantages of every single approach. In this thesis, we propose a way to do so. We introduce the paradigm of Multi-Domain Engineering (MDE) which means model-driven development with multiple domain-specific languages in variability-intensive scenarios. MDE strongly emphasize the advantages of MDSD with multiple DSLs as a neccessity for efficiency in software development and treats the paradigm of SPLE as indispensable means to achieve a maximum degree of reuse and flexibility. We present HybridMDSD as our solution approach to implement the MDE paradigm. The core idea of HybidMDSD is to capture the semantics of particular DSLs based on properly defined semantics for software models contained in a central upper ontology. Then, the resulting semantic foundation can be used to establish references between arbitrary domain-specific models (DSMs) and sophisticated instance level reasoning ensures integrity and allows to handle partiucular change adaptation scenarios. Moreover, we present an approach to automatically generate composition code that integrates generated assets from separate DSLs. All necessary development tasks are arranged in a comprehensive development process. Finally, we validate the introduced approach with a profound prototypical implementation and an industrial-scale case study.Softwareentwicklung ist komplex: ausführbare Anwendungen beinhalten und vereinen eine Vielzahl an Komponenten, die mit unterschiedlichen Frameworks, Bibliotheken oder Kommunikationsplattformen entwickelt werden. Die technische Komplexität in der Entwicklung bindet Ressourcen, verhindert effiziente Problemlösung und führt zu insgesamt hohen Kosten bei der Produktion von Software. Zusätzliche Herausforderungen entstehen durch die Vielfalt und Unterschiedlichkeit an Kundenwünschen, die der Entwicklung ein hohes Maß an Flexibilität in Software-Implementierungen abverlangen und die Auslieferung verschiedener Produkte auf Grundlage einer Basis-Implementierung nötig machen. Zur Reduktion der technischen Komplexität bietet sich das Paradigma der modellgetriebenen Softwareentwicklung (MDSD) an. Software-Spezifikationen in Form abstrakter Modelle werden hier verwendet um Programmcode zu generieren, was die fehleranfällige, manuelle Programmierung ähnlicher Komponenten überflüssig macht. Modellierungssprachen, die auf eine bestimmte Problemdomäne zugeschnitten sind, nennt man domänenspezifische Sprachen (DSLs). Domänenspezifische Modellierung (DSM) vereint technische Lösungen mit intentionalen Problemen und ermöglicht die Entfaltung spezialisierter Expertise. Um der Funktionsvielfalt in Software Herr zu werden, bietet der Forschungszweig der Softwareproduktlinienentwicklung (SPLE) verschiedene Mittel zur Verwaltung von Variabilität in Software-Produkten an. Hierzu zählen Feature-Modelle sowie passende Werkzeuge, um Features auf Implementierungsbestandteile abzubilden. Modellgetriebene Entwicklung, domänenspezifische Modellierung und eine spezielle Handhabung von Variabilität in Softwareproduktlinien sind von entscheidender Bedeutung für den Erfolg von Softwarefirmen. Zur Zeit bestehen diese Paradigmen losgelöst voneinander und müssen integriert werden, damit die Vorteile jedes einzelnen für die Gesamtheit der Softwareentwicklung entfaltet werden können. In dieser Arbeit wird ein Ansatz vorgestellt, der dies ermöglicht. Es wird das Multi-Domain Engineering Paradigma (MDE) eingeführt, welches die modellgetriebene Softwareentwicklung mit mehreren domänenspezifischen Sprachen in variabilitätszentrierten Szenarien beschreibt. MDE stellt die Vorteile modellgetriebener Entwicklung mit mehreren DSLs als eine Notwendigkeit für Effizienz in der Entwicklung heraus und betrachtet das SPLE-Paradigma als unabdingbares Mittel um ein Maximum an Wiederverwendbarkeit und Flexibilität zu erzielen. In der Arbeit wird ein Ansatz zur Implementierung des MDE-Paradigmas, mit dem Namen HybridMDSD, vorgestellt

    A Model-Driven Approach for the Design, Implementation, and Execution of Software Development Methods

    Full text link
    [EN] Software development projects are diverse in nature. For this reason, software companies are often forced to define their methods in-house. In order to define methods efficiently and effectively, software companies require systematic solutions that are built upon sound methodical foundations. Providing these solutions is the main goal of the Method Engineering discipline. Method Engineering is the discipline to design, construct, and adapt methods, techniques, and tools for the development of information systems. Over the last two decades, a lot of research work has been performed in this area. However, despite its potential benefits, Method Engineering is not widely used in industrial settings. Some of the causes of this reality are the high theoretical complexity of Method Engineering and the lack of adequate software support. In this thesis, we aim to mitigate some of the problems that affect Method Engineering by providing a novel methodological approach that is built upon Model-Driven Engineering (MDE) foundations. The use of MDE enables a rise in abstraction, automation, and reuse that allows us to alleviate the complexity of our Method Engineering approach. Furthermore, by leveraging MDE techniques (such as metamodeling, model transformations, and models at runtime), our approach supports three phases of the Method Engineering lifecycle: design, implementation, and execution. This is unlike traditional Method Engineering approaches, which, in general, only support one of these phases. In order to provide software support for our proposal, we developed a Computer-Aided Method Engineering (CAME) environment that is called MOSKitt4ME. To ensure that MOSKitt4ME offered the necessary functionality, we identified a set of functional requirements prior to developing the tool. Then, after these requirements were identified, we defined the architecture of our CAME environment, and, finally, we implemented the architecture in the context of Eclipse. The thesis work was evaluated by means of a study that involved the participation of end users. In this study, MOSKitt4ME was assessed by means of the Technology Acceptance Model (TAM) and the Think Aloud method. While the TAM allowed us to measure usefulness and ease of use in a subjective manner, the Think Aloud method allowed us to analyze these measures objectively. Overall, the results were favorable. MOSKitt4ME was highly rated in perceived usefulness and ease of use; we also obtained positive results with respect to the users' actual performance and the difficulty experienced.[ES] Los proyectos de desarrollo de software son diversos por naturaleza. Por este motivo, las compañías de software se ven forzadas frecuentemente a definir sus métodos de manera interna. Para poder definir métodos de forma efectiva y eficiente, las compañías necesitan soluciones sistemáticas que estén definidas sobre unos fundamentos metodológicos sólidos. Proporcionar estas soluciones es el principal objetivo de la Ingeniería de Métodos. La Ingeniería de Métodos es la disciplina que aborda el diseño, la construcción y la adaptación de métodos, técnicas y herramientas para el desarrollo de sistemas de información. Durante las dos últimas décadas, se ha llevado a cabo mucho trabajo de investigación en esta área. Sin embargo, pese a sus potenciales beneficios, la Ingeniería de Métodos no se aplica ampliamente en contextos industriales. Algunas de las principales causas de esta situación son la alta complejidad teórica de la Ingeniería de Métodos y la falta de un apropiado soporte software. En esta tesis, pretendemos mitigar algunos de los problemas que afectan a la Ingeniería de Métodos proporcionando una propuesta metodológica innovadora que está basada en la Ingeniería Dirigida por Modelos (MDE). El uso de MDE permite elevar el nivel de abstracción, automatización y reuso, lo que posibilita una reducción de la complejidad de nuestra propuesta. Además, aprovechando técnicas de MDE (como por ejemplo el metamodelado, las transformaciones de modelos y los modelos en tiempo de ejecución), nuestra aproximación da soporte a tres fases del ciclo de vida de la Ingeniería de Métodos: diseño, implementación y ejecución. Esto es a diferencia de las propuestas existentes, las cuales, por lo general, sólo dan soporte a una de estas fases. Con el objetivo de proporcionar soporte software para nuestra propuesta, implementamos una herramienta CAME (Computer-Aided Method Engineering) llamada MOSKitt4ME. Para garantizar que MOSKitt4ME proporcionaba la funcionalidad necesaria, definimos un conjunto de requisitos funcionales como paso previo al desarrollo de la herramienta. Tras la definción de estos requisitos, definimos la arquitectura de la herramienta CAME y, finalmente, implementamos la arquitectura en el contexto de Eclipse. El trabajo desarrollado en esta tesis se evaluó por medio de un estudio donde participaron usuarios finales. En este estudio, MOSKitt4ME se evaluó por medio del Technology Acceptance Model (TAM) y del método Think Aloud. Mientras que el TAM permitió medir utilidad y facilidad de uso de forma subjetiva, el método Think Aloud permitió analizar estas medidas objetivamente. En general, los resultados obtenidos fueron favorables. MOSKitt4ME fue valorado de forma positiva en cuanto a utilidad y facilidad de uso percibida; además, obtuvimos resultados positivos en cuanto al rendimiento objetivo de los usuarios y la dificultad experimentada.[CA] Els projectes de desenvolupament de programari són diversos per naturalesa. Per aquest motiu, les companyies es veuen forçades freqüenment a definir els seus mètodes de manera interna. Per poder definir mètodes de forma efectiva i eficient, les companyies necessiten solucions sistemàtiques que estiguin definides sobre uns fundaments metodològics sòlids. Proporcionar aquestes solucions és el principal objectiu de l'Enginyeria de Mètodes. L'Enginyeria de Mètodes és la disciplina que aborda el diseny, la construcció i l'adaptació de mètodes, tècniques i eines per al desenvolupament de sistemes d'informació. Durant les dues últimes dècades, s'ha dut a terme molt de treball de recerca en aquesta àrea. No obstant, malgrat els seus potencials beneficis, l'Enginyeria de Mètodes no s'aplica àmpliament en contextes industrials. Algunes de les principals causes d'aquesta situació són l'alta complexitat teòrica de l'Enginyeria de Mètodes i la falta d'un apropiat suport de programari. En aquesta tesi, pretenem mitigar alguns dels problemes que afecten a l'Enginyeria de Mètodes proporcionant una proposta metodològica innovadora que està basada en l'Enginyeria Dirigida per Models (MDE). L'ús de MDE ens permet elevar el nivell d'abstracció, automatització i reutilització, possibilitant una reducció de la complexitat de la nostra proposta. A més a més, aprofitant tècniques de MDE (com per exemple el metamodelat, les transformacions de models i els models en temps d'execució), la nostra aproximació suporta tres fases del cicle de vida de l'Enginyeria de Mètodes: diseny, implementació i execució. Açò és a diferència de les propostes existents, les quals, en general, només suporten una d'aquestes fases. Amb l'objectiu de proporcionar suport de programari per a la nostra proposta, implementàrem una eina CAME (Computer-Aided Method Engineering) anomenada MOSKitt4ME. Per garantir que MOSKitt4ME oferia la funcionalitat necessària, definírem un conjunt de requisits funcionals com a pas previ al desenvolupament de l'eina. Després de la definició d'aquests requisits, definírem la arquitectura de l'eina CAME i, finalment, implementàrem l'arquitectura en el contexte d'Eclipse. El treball desenvolupat en aquesta tesi es va avaluar per mitjà d'un estudi on van participar usuaris finals. En aquest estudi, MOSKitt4ME es va avaluar per mitjà del Technology Acceptance Model (TAM) i el mètode Think Aloud. Mentre que el TAM va permetre mesurar utilitat i facilitat d'ús de manera subjectiva, el mètode Think Aloud va permetre analitzar aquestes mesures objectivament. En general, els resultats obtinguts van ser favorables. MOSKitt4ME va ser valorat de forma positiva pel que fa a utilitat i facilitat d'ús percebuda; a més a més, vam obtenir resultats positius pel que fa al rendiment objectiu dels usuaris i a la dificultat experimentada.Cervera Úbeda, M. (2015). A Model-Driven Approach for the Design, Implementation, and Execution of Software Development Methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53931TESI
    corecore