1,163 research outputs found

    Kernal principal component analysis of the ear morphology

    Get PDF
    This paper describes features in the ear shape that change across a population of ears and explores the corresponding changes in ear acoustics. The statistical analysis conducted over the space of ear shapes uses a kernel principal component analysis (KPCA). Further, it utilizes the framework of large deformation diffeomorphic metric mapping and the vector space that is constructed over the space of initial momentums, which describes the diffeomorphic transformations from the reference template ear shape. The population of ear shapes examined by the KPCA are 124 left and right ear shapes from the SYMARE database that were rigidly aligned to the template (population average) ear. In the work presented here we show the morphological variations captured by the first two kernel principal components, and also show the acoustic transfer functions of the ears which are computed using fast multipole boundary element method simulations

    Large Deformation Diffeomorphic Metric Mapping Provides New Insights into the Link Between Human Ear Morphology and the Head-Related Transfer Functions

    Get PDF
    The research findings presented in this thesis is composed of four sections. In the first section of this thesis, it is shown how LDDMM can be applied to deforming head and ear shapes in the context of morphoacoustic study. Further, tools are developed to measure differences in 3D shapes using the framework of currents and also to compare and measure the differences between the acoustic responses obtained from BEM simulations for two ear shapes. Finally this section introduces the multi-scale approach for mapping ear shapes using LDDMM. The second section of the thesis estimates a template ear, head and torso shape from the shapes available in the SYMARE database. This part of the thesis explains a new procedure for developing the template ear shape. The template ear and head shapes were are verified by comparing the features in the template shapes to corresponding features in the CIPIC and SYMARE database population. The third section of the thesis examines the quality of the deformations from the template ear shape to target ears in SYMARE from both an acoustic and morphological standpoint. As a result of this investigation, it was identified that ear shapes can be studied more accurately by the use of two physical scales and that scales at which the ear shapes were studied were dependent on the parameters chosen when mapping ears in the LDDMM framework. Finally, this section concludes by noting how shape distances vary with the acoustic distances using the developed tools. In the final part of this thesis, the variations in the morphology of ears are examined using the Kernel Principle Component Analysis (KPCA) and the changes in the corresponding acoustics are studied using the standard principle component analysis (PCA). These examinations involved identifying the number of kernel principle components that are required in order to model ear shapes with an acceptable level of accuracy, both morphologically and acoustically

    Surround by Sound: A Review of Spatial Audio Recording and Reproduction

    Get PDF
    In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and reproduction using a large number of microphones and loudspeakers replicate an acoustic scene within a region. These two fundamentally different types of techniques are discussed in the paper. A recent popular area, multi-zone reproduction, is also briefly reviewed in the paper. The paper is concluded with a discussion of the current state of the field and open problemsThe authors acknowledge National Natural Science Foundation of China (NSFC) No. 61671380 and Australian Research Council Discovery Scheme DE 150100363

    Frequency Estimation Of The First Pinna Notch In Head-Related Transfer Functions With A Linear Anthropometric Model

    Get PDF
    The relation between anthropometric parameters and Head-Related Transfer Function (HRTF) features, especially those due to the pinna, are not fully understood yet. In this paper we apply signal processing techniques to extract the frequencies of the main pinna notches (known as N1, N2, and N3) in the frontal part of the median plane and build a model relating them to 13 different anthropometric parameters of the pinna, some of which depend on the elevation angle of the sound source. Results show that while the considered anthropometric parameters are not able to approximate with sufficient accuracy neither the N2 nor the N3 frequency, eight of them are sufficient for modeling the frequency of N1 within a psychoacoustically acceptable margin of error. In particular, distances between the ear canal and the outer helix border are the most important parameters for predicting N1

    Extraction of anthropometric measures from 3D-meshes for the individualization of head-related transfer functions

    Get PDF
    Anthropometric measures are used for individualizing head-related transfer functions (HRTFs) for example, by selecting best match HRTFs from a large library or by manipulating HRTF with respect to anthropometrics. Within this process, an accurate extraction of anthropometric measures is crucial as small changes may already influence the individualization. Anthropometrics can be measured in many different ways, e.g., from pictures or anthropometers. However, these approaches tend to be inaccurate. Therefore, we propose to use Kinect for generating individual 3D head-and-shoulder meshes from which anthropometrics are automatically extracted. This is achieved by identifying and measuring distances between characteristics points on the outline of each mesh and was found to yield accurate and reliable estimates of corresponding features. In our experiment, a large set of anthropometric measures was automatically extracted for 61 subjects and evaluated in terms of a cross-validation against the manually extracted correspondent

    INTERAURAL TIME DELAY PERSONALISATION USING INCOMPLETE HEAD SCANS

    Get PDF
    ABSTRACT When using a set of generic head-related transfer functions (HRTFs) for spatial sound rendering, personalisation can be considered to minimise localisation errors. This typically involves tuning the characteristics of the HRTFs or a parametric model according to the listener's anthropometry. However, measuring anthropometric features directly remains a challenge in practical applications, and the mapping between anthropometric and acoustic features is an open research problem. Here we propose matching a face template to a listener's head scan or depth image to extract anthropometric information. The deformation of the template is used to personalise the interaural time differences (ITDs) of a generic HRTF set. The proposed method is shown to outperform reference methods when used with high-resolution 3-D scans. Experiments with single-frame depth images indicate that the method is applicable to lower resolution or partial scans which are quicker and easier to obtain than full 3-D scans. These results suggest that the proposed method may be a viable option for ITD personalisation in practical applications

    Cost-effective 3D scanning and printing technologies for outer ear reconstruction: Current status

    Get PDF
    Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas. This paper reviews current possibilities and latest use cases for 3D-scanning, data processing and printing of outer ear replicas with a focus on low-cost solutions for rehabilitation engineering

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed
    corecore