2,069 research outputs found

    A Binary-based MapReduce Analysis for Cloud Logs

    Get PDF
    Efficiently managing and analyzing cloud logs is a difficult and expensive task due the growth in size and variety of formats. In this paper, we propose a binary-based approach for frequency mining correlated attacks in log data. This approach is conceived to work using the MapReduce programming model. Initial experimental results are presented and they serve as the subject of a data mining algorithm to help us predict the likelihood of correlated attacks taking place

    A Binary-based MapReduce Analysis for Cloud Logs

    Get PDF
    Efficiently managing and analyzing cloud logs is a difficult and expensive task due the growth in size and variety of formats. In this paper, we propose a binary-based approach for frequency mining correlated attacks in log data. This approach is conceived to work using the MapReduce programming model. Initial experimental results are presented and they serve as the subject of a data mining algorithm to help us predict the likelihood of correlated attacks taking place

    Unweaving complex reactivity: graph-based tools to handle chemical reaction networks

    Get PDF
    La informació a nivell molecular obtinguda mitjançant estudis "in silico" s’ha establert com una eina essencial per a la caracterització de mecanismes de reacció complexos. A més, l’aplicabilitat de la química computacional s’ha vist substancialment ampliada a causa de l’increment continuat de la potència de càlcul disponible durant les darreres dècades. Així, no només han augmentat la precisió dels mètodes a utilitzar o la mida dels sistemes a modelitzar sinó també el grau de detall que es pot aconseguir en les descripcions mecanístiques resultants. Tanmateix, aquestes caracteritzacions més profundes, usualment assistides per tècniques d’automatització que permeten l’exploració de regions més extenses de l’espai químic, suposen un increment de la complexitat dels sistemes estudiats i per tant una limitació de la seva interpretabilitat. En aquesta Tesi s’han proposat, desenvolupat i posat a prova diverses eines amb el fi de fer el processament d’aquest tipus de xarxes de reacció químiques (CRNs) més simple i millorar la comprensió de processos reactius i catalítics complexos. Aquesta col·lecció d’eines té com fonament la utilització de grafs per modelitzar les xarxes (CRNs) corresponents, per poder fer servir els mètodes de la Teoria de Grafs (cerca de camins, isomorfismes...) en un context químic. Més concretament, aquestes eines inclouen amk-tools, una llibreria per a la visualització interactiva de xarxes de reacció descobertes de manera automàtica, gTOFfee, per a l’aplicació del "energy span model" pel càlcul de la freqüència de recanvi de cicles catalítics complexos calculats computacionalment, i OntoRXN, una ontologia per descriure CRNs de forma semàntica, integrant la topologia de la xarxa i la informació calculada en una única entitat organitzada segons els principis del "Semantic Data".La información a nivel molecular obtenida por medio de estudios "in silico" se ha convertido en una herramienta indispensable para la caracterización y comprensión de mecanismos de reacción complejos. Asimismo, la aplicabilidad de la química computacional se ha ampliado sustancialmente como consecuencia del continuo incremento de la potencia de cálculo durante las últimas décadas. Así, no sólo han aumentado la precisión de los métodos o el tamaño de los sistemas modelizables, sino también el grado de detalle en la descripción mecanística. Sin embargo, aumentar la profundidad de la caracterización de un sistema químico, usualmente a través de técnicas de automatización que permiten explorar ecciones más extensas del espacio químico, supone un aumento en la complejidad de los sistemas resultantes, dificultando la interpretación de los resultados. En esta Tesis se han propuesto, desarrollado y puesto a prueba distintas herramientas para simplificar el procesado de este tipo de redes de reacción químicas (CRNs), con el fin de mejorar la comprensión de procesos reactivos y catalíticos complejos. Este conjunto de herramientas se basa en el uso de grafos para modelizar las redes (CRNs) correspondientes, con tal de poder emplear los métodos de la Teoría de Grafos (búsqueda de caminos, isomorfismos...) bajo un contexto químico. Concretamente, estas herramientas incluyen amk-tools, para la visualización interactiva de redes de reacción descubiertas automáticamente, gTOFfee, para la aplicación del “energy span model” para calcular la frecuencia de recambio de ciclos catalíticos complejos caracterizados computacionalmente, y OntoRXN, una ontología para describir CRNs de manera semántica, integrando la topología de la red y la información calculada en una única entidad organizada bajo los principios del “Semantic Data”.The molecular-level insights gathered through "in silico" studies have become an essential asset for the elucidation and understanding of complex reaction mechanisms. Indeed, the applicability of computational chemistry has strongly widened due to the vast increase in computational power along the last decades. In this sense, not only the accuracy of the applied methods or the size of the target systems have increased, but also the level of detail attained for the mechanistic description. However, performing deeper descriptions of chemical systems, most often resorting to automation techniques that allow to easily explore larger parts of the chemical space, comes at the cost of also augmenting their complexity, rendering the results much harder to interpret. Throughout this Thesis, we have proposed, developed and tested a collection of tools aiming to process this kind of complex chemical reaction networks (CRNs), in order to provide new insights on reactive and catalytic processes. All of these tools employ graphs to model the target CRNs, in order to be able to use the methods of Graph Theory (e.g. path searches, isomorphisms...) in a chemical context. The tools that are discussed include amk-tools, a framework for the interactive visualization of automatically discovered reaction networks, gTOFfee, for the application of the energy span model to compute the turnover frequency of computationally characterized catalytic cycles, and OntoRXN, an ontology for the description of CRNs in a semantic manner integrating network topology and calculation information in a single, highly-structured entity

    Healthcare systems protection: All-in-one cybersecurity approach

    Get PDF
    Cyber risks are increasingly widespread as healthcare organizations play a defining role in society. Several studies have revealed an increase in cybersecurity threats in the industry, which should concern us all. When it comes to cybersecurity, the consequences can be felt throughout the organization, from the smallest processes to the overall ability of the organization to function. Typically, a cyberattack results in the disclosure of confidential information that undermines your competitive advantage and overall trust. Healthcare as a critical sector has, like many other sectors, a late bet on its transformation to cybersecurity across the board. This dissertation reinforces this need by presenting a value-added solution that helps strengthen the internal processes of healthcare units, enabling their primary mission of saving lives while ensuring the confidentiality and security of patient and institutional data. The solution is presented as a technological composite that translates into a methodology and innovative artifact for integration, monitoring, and security of critical medical infrastructures based on operational use cases. The approach that involves people, processes, and technology is based on a model that foresees the evaluation of potential assets for integration and monitoring, as well as leveraging the efficiency in responding to security incidents with the formal development of a process and mechanisms for alert and resolution of exposure and attack scenarios. On a technical level, the artifact relies on the integration of a medical image archiving system (PACS) into a SIEM to validate application logs that are linked to rules to map anomalous behaviors that trigger the incident management process on an IHS platform with custom-developed features. The choice for integration in the validation prototype of the PACS system is based not only on its importance in the orchestration of activities in the organization of a health institution, but also with the recent recommendations of various cybersecurity agencies and organizations for the importance of their protection in response to the latest trends in cyberattacks. In line with the results obtained, this approach will have full applicability in a real operational context, following the latest practices and technologies in the sector.Os riscos cibernéticos estão cada vez mais difundidos à medida que as organizações de cuidados de saúde desempenham um papel determinante na sociedade. Vários estudos revelaram um aumento das ameaças de cibersegurança no setor, o que nos deve preocupar a todos. Quando se trata de cibersegurança, as consequências podem ser sentidas em toda a organização, desde os mais pequenos processos até à sua capacidade global de funcionamento. Normalmente, um ciberataque resulta na divulgação de informações confidenciais que colocam em causa a sua vantagem competitiva e a confiança geral. O healthcare como setor crítico apresenta, como muitos outros setores, uma aposta tardia na sua transformação para a cibersegurança de forma generalizada. Esta dissertação reforça esta necessidade apresentando uma solução de valor acrescentado que ajuda a potenciar os processos internos das unidades de saúde possibilitando a sua missão principal de salvar vidas, aumentando a garantia de confidencialidade e segurança dos dados dos pacientes e instituições. A solução apresenta-se como um compósito tecnológico que se traduz numa metodologia e artefacto de inovação para integração, monitorização e segurança de infraestruturas médicas críticas baseado em use cases de operação. A abordagem que envolve pessoas, processos e tecnologia assenta num modelo que prevê a avaliação de potenciais ativos para integração e monitorização, como conta alavancar a eficiência na resposta a incidentes de segurança com o desenvolvimento formal de um processo e mecanismos para alerta e resolução de cenários de exposição e ataque. O artefacto, a nível tecnológico, conta com a integração do sistema de arquivo de imagem médica (PACS) num SIEM para validação de logs aplicacionais que estão associados a regras que mapeiam comportamentos anómalos que originam o despoletar do processo de gestão de incidentes numa plataforma IHS com funcionalidades desenvolvidas à medida. A escolha para integração no protótipo de validação do sistema PACS tem por base não só a sua importância na orquestração de atividades na orgânica duma instituição de saúde, mas também com as recentes recomendações de várias agências e organizações de cibersegurança para a importância da sua proteção em resposta às últimas tendências de ciberataques. Em linha com os resultados auscultados, esta abordagem terá total aplicabilidade em contexto real de operação, seguindo as mais recentes práticas e tecnologias no sector

    SeaFlows – A Compliance Checking Framework for Supporting the Process Lifecycle

    Get PDF
    Compliance-awareness is undoubtedly of utmost importance for companies nowadays. Even though an automated approach to compliance checking and enforcement has been advocated in recent literature as a means to tame the high costs for compliance-awareness, the potential of automated mechanisms for supporting business process compliance is not yet depleted. Business process compliance deals with the question whether business processes are designed and executed in harmony with imposed regulations. In this thesis, we propose a compliance checking framework for automating business process compliance verification within process management systems (PrMSs). Such process-aware information systems constitute an ideal environment for the systematic integration of automated business process compliance checking since they bring together different perspectives on a business process and provide access to process data. The objective of this thesis is to devise a framework that enhances PrMSs with compliance checking functionality. As PrMSs enable both the design and the execution of business processes, the designated compliance checking framework must accommodate mechanisms to support these different phases of the process lifecycle. A compliance checking framework essentially consists of two major building blocks: a compliance rule language to capture compliance requirements in a checkable manner and compliance checking mechanisms for verification of process models and process instances. Key to the practical application of a compliance checking framework will be its ability to provide comprehensive and meaningful compliance diagnoses. Based on the requirements analysis and meta-analyses, we developed the SeaFlows compliance checking framework proposed in this thesis. We introduce the compliance rule graph (CRG) language for modeling declarative compliance rules. The language provides modeling primitives with a notation based on nodes and edges. A compliance rule is modeled by defining a pattern of activity executions activating a compliance rule and consequences that have to apply once a rule becomes activated. In order to enable compliance verification of process models and process instances, the CRG language is operationalized. Key to this approach is the exploitation of the graph structure of CRGs for representing compliance states of the respective CRGs in a transparent and interpretable manner. For that purpose, we introduce execution states to mark CRG nodes in order to indicate which parts of the CRG patterns can be observed in a process execution. By providing rules to alter the markings when a new event is processed, we enable to update the compliance state for each observed event. The beauty of our approach is that both design and runtime can be supported using the same mechanisms. Thus, no transformation of compliance rules in different representations for process model verification or for compliance monitoring becomes necessary. At design time, the proposed approach can be applied to explore a process model and to detect which compliance states with respect to imposed CRGs a process model is able to yield. At runtime, the effective compliance state of process instances can be monitored taking also the future predefined in the underlying process model into account. As compliance states are encoded based on the CRG structure, fine-grained and intelligible compliance diagnoses can be derived in each detected compliance state. Specifically, it becomes possible to provide feedback not only on the general enforcement of a compliance rule but also at the level of particular activations of the rule contained in a process. In case of compliance violations, this can explain and pinpoint the source of violations in a process. In addition, measures to satisfy a compliance rule can be easily derived that can be seized for providing proactive support to comply. Altogether, the SeaFlows compliance checking framework proposed in this thesis can be embedded into an overall integrated compliance management framework

    Towards a systematic security evaluation of the automotive Bluetooth interface

    Get PDF
    In-cabin connectivity and its enabling technologies have increased dramatically in recent years. Security was not considered an essential property, a mind-set that has shifted significantly due to the appearance of demonstrated vulnerabilities in these connected vehicles. Connectivity allows the possibility that an external attacker may compromise the security - and therefore the safety - of the vehicle. Many exploits have already been demonstrated in literature. One of the most pervasive connective technologies is Bluetooth, a short-range wireless communication technology. Security issues with this technology are well-documented, albeit in other domains. A threat intelligence study was carried out to substantiate this motivation and finds that while the general trend is towards increasing (relative) security in automotive Bluetooth implementations, there is still significant technological lag when compared to more traditional computing systems. The main contribution of this thesis is a framework for the systematic security evaluation of the automotive Bluetooth interface from a black-box perspective (as technical specifications were loose or absent). Tests were performed through both the vehicle’s native connection and through Bluetoothenabled aftermarket devices attached to the vehicle. This framework is supported through the use of attack trees and principles as outlined in the Penetration Testing Execution Standard. Furthermore, a proof-of-concept tool was developed to implement this framework in a semi-automated manner, to carry out testing on real-world vehicles. The tool also allows for severity classification of the results acquired, as outlined in the SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. Results of the severity classification are validated through domain expert review. Finally, how formal methods could be integrated into the framework and tool to improve confidence and rigour, and to demonstrate how future iterations of design could be improved is also explored. In conclusion, there is a need for systematic security testing, based on the findings of the threat intelligence study. The systematic evaluation and the developed tool successfully found weaknesses in both the automotive Bluetooth interface and in the vehicle itself through Bluetooth-enabled aftermarket devices. Furthermore, the results of applying this framework provide a focus for counter-measure development and could be used as evidence in a security assurance case. The systematic evaluation framework also allows for formal methods to be introduced for added rigour and confidence. Demonstrations of how this might be performed (with case studies) were presented. Future recommendations include using this framework with more test vehicles and expanding on the existing attack trees that form the heart of the evaluation. Further work on the tool chain would also be desirable. This would enable further accuracy of any testing or modelling required, and would also take automation of the entire process further

    Networks and trust: systems for understanding and supporting internet security

    Get PDF
    Includes bibliographical references.2022 Fall.This dissertation takes a systems-level view of the multitude of existing trust management systems to make sense of when, where and how (or, in some cases, if) each is best utilized. Trust is a belief by one person that by transacting with another person (or organization) within a specific context, a positive outcome will result. Trust serves as a heuristic that enables us to simplify the dozens decisions we make each day about whom we will transact with. In today's hyperconnected world, in which for many people a bulk of their daily transactions related to business, entertainment, news, and even critical services like healthcare take place online, we tend to rely even more on heuristics like trust to help us simplify complex decisions. Thus, trust plays a critical role in online transactions. For this reason, over the past several decades researchers have developed a plethora of trust metrics and trust management systems for use in online systems. These systems have been most frequently applied to improve recommender systems and reputation systems. They have been designed for and applied to varied online systems including peer-to-peer (P2P) filesharing networks, e-commerce platforms, online social networks, messaging and communication networks, sensor networks, distributed computing networks, and others. However, comparatively little research has examined the effects on individuals, organizations or society of the presence or absence of trust in online sociotechnical systems. Using these existing trust metrics and trust management systems, we design a set of experiments to benchmark the performance of these existing systems, which rely heavily on network analysis methods. Drawing on the experiments' results, we propose a heuristic decision-making framework for selecting a trust management system for use in online systems. In this dissertation we also investigate several related but distinct aspects of trust in online sociotechnical systems. Using network/graph analysis methods, we examine how trust (or lack of trust) affects the performance of online networks in terms of security and quality of service. We explore the structure and behavior of online networks including Twitter, GitHub, and Reddit through the lens of trust. We find that higher levels of trust within a network are associated with more spread of misinformation (a form of cybersecurity threat, according to the US CISA) on Twitter. We also find that higher levels of trust in open source developer networks on GitHub are associated with more frequent incidences of cybersecurity vulnerabilities. Using our experimental and empirical findings previously described, we apply the Systems Engineering Process to design and prototype a trust management tool for use on Reddit, which we dub Coni the Trust Moderating Bot. Coni is, to the best of our knowledge, the first trust management tool designed specifically for use on the Reddit platform. Through our work with Coni, we develop and present a blueprint for constructing a Reddit trust tool which not only measures trust levels, but can use these trust levels to take actions on Reddit to improve the quality of submissions within the community (a subreddit)

    Net.Sense

    Get PDF
    Net.sense will server as a proof-of-concept of a new type of network management system, using biological models and statistical principles to address scalability, predictability, and reliability issues associated with managing the highly complex computer systems that we as a society have come to depend on

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research
    corecore