20 research outputs found

    Detection and Mitigation of Steganographic Malware

    Get PDF
    A new attack trend concerns the use of some form of steganography and information hiding to make malware stealthier and able to elude many standard security mechanisms. Therefore, this Thesis addresses the detection and the mitigation of this class of threats. In particular, it considers malware implementing covert communications within network traffic or cloaking malicious payloads within digital images. The first research contribution of this Thesis is in the detection of network covert channels. Unfortunately, the literature on the topic lacks of real traffic traces or attack samples to perform precise tests or security assessments. Thus, a propaedeutic research activity has been devoted to develop two ad-hoc tools. The first allows to create covert channels targeting the IPv6 protocol by eavesdropping flows, whereas the second allows to embed secret data within arbitrary traffic traces that can be replayed to perform investigations in realistic conditions. This Thesis then starts with a security assessment concerning the impact of hidden network communications in production-quality scenarios. Results have been obtained by considering channels cloaking data in the most popular protocols (e.g., TLS, IPv4/v6, and ICMPv4/v6) and showcased that de-facto standard intrusion detection systems and firewalls (i.e., Snort, Suricata, and Zeek) are unable to spot this class of hazards. Since malware can conceal information (e.g., commands and configuration files) in almost every protocol, traffic feature or network element, configuring or adapting pre-existent security solutions could be not straightforward. Moreover, inspecting multiple protocols, fields or conversations at the same time could lead to performance issues. Thus, a major effort has been devoted to develop a suite based on the extended Berkeley Packet Filter (eBPF) to gain visibility over different network protocols/components and to efficiently collect various performance indicators or statistics by using a unique technology. This part of research allowed to spot the presence of network covert channels targeting the header of the IPv6 protocol or the inter-packet time of generic network conversations. In addition, the approach based on eBPF turned out to be very flexible and also allowed to reveal hidden data transfers between two processes co-located within the same host. Another important contribution of this part of the Thesis concerns the deployment of the suite in realistic scenarios and its comparison with other similar tools. Specifically, a thorough performance evaluation demonstrated that eBPF can be used to inspect traffic and reveal the presence of covert communications also when in the presence of high loads, e.g., it can sustain rates up to 3 Gbit/s with commodity hardware. To further address the problem of revealing network covert channels in realistic environments, this Thesis also investigates malware targeting traffic generated by Internet of Things devices. In this case, an incremental ensemble of autoencoders has been considered to face the ''unknown'' location of the hidden data generated by a threat covertly exchanging commands towards a remote attacker. The second research contribution of this Thesis is in the detection of malicious payloads hidden within digital images. In fact, the majority of real-world malware exploits hiding methods based on Least Significant Bit steganography and some of its variants, such as the Invoke-PSImage mechanism. Therefore, a relevant amount of research has been done to detect the presence of hidden data and classify the payload (e.g., malicious PowerShell scripts or PHP fragments). To this aim, mechanisms leveraging Deep Neural Networks (DNNs) proved to be flexible and effective since they can learn by combining raw low-level data and can be updated or retrained to consider unseen payloads or images with different features. To take into account realistic threat models, this Thesis studies malware targeting different types of images (i.e., favicons and icons) and various payloads (e.g., URLs and Ethereum addresses, as well as webshells). Obtained results showcased that DNNs can be considered a valid tool for spotting the presence of hidden contents since their detection accuracy is always above 90% also when facing ''elusion'' mechanisms such as basic obfuscation techniques or alternative encoding schemes. Lastly, when detection or classification are not possible (e.g., due to resource constraints), approaches enforcing ''sanitization'' can be applied. Thus, this Thesis also considers autoencoders able to disrupt hidden malicious contents without degrading the quality of the image

    Internet-of-Things (IoT) Security Threats: Attacks on Communication Interface

    Get PDF
    Internet of Things (IoT) devices collect and process information from remote places and have significantly increased the productivity of distributed systems or individuals. Due to the limited budget on power consumption, IoT devices typically do not include security features such as advanced data encryption and device authentication. In general, the hardware components deployed in IoT devices are not from high end markets. As a result, the integrity and security assurance of most IoT devices are questionable. For example, adversary can implement a Hardware Trojan (HT) in the fabrication process for the IoT hardware devices to cause information leak or malfunctions. In this work, we investigate the security threats on IoT with a special emphasis on the attacks that aim for compromising the communication interface between IoT devices and their main processing host. First, we analyze the security threats on low-energy smart light bulbs, and then we exploit the limitation of Bluetooth protocols to monitor the unencrypted data packet from the air-gapped network. Second, we examine the security vulnerabilities of single-wire serial communication protocol used in data exchange between a sensor and a microcontroller. Third, we implement a Man-in-the-Middle (MITM) attack on a master-slave communication protocol adopted in Inter-integrated Circuit (I2C) interface. Our MITM attack is executed by an analog hardware Trojan, which crosses the boundary between digital and analog worlds. Furthermore, an obfuscated Trojan detection method(ADobf) is proposed to monitor the abnormal behaviors induced by analog Trojans on the I2C interface

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Process query systems : advanced technologies for process detection and tracking

    Get PDF
    Vrijwel alles wat rondom ons heen gebeurt is van nature proces georienteerd. Het is dan niet verbazingwekkend dat het mentale omgevingsbeeld dat mensen van hun omgeving vormen hierop is gebaseerd. Zodra we iets waarnemen, en vervolgens herkennen, betekent dit dat we de waarneming begrijpen, ze bij elkaar kunnen groeperen, en voorspellen welke andere waarnemingen spoedig zullen volgen. Neem bijvoorbeeld een kamer met een televisie. Zodra we de kamer binnenkomen horen we geluiden, misschien stemmen, mischien muziek. Als we om ons heen kijken zien wij spoedig, visueel, de televisie. Omdat we het "proces" van TV goed kennen, kunnen we mentaal de geluiden bij het beeld van de televisie voegen. Ook weten we dat de telvisie aan is, en daarom verwachten we dat er nog meer geluiden zullen volgen. Zodra we de afstandsbediening oppakken en de televisie uitzetten, verwachten we dat het beeld verdwijnt en de geluiden ophouden. Als dit niet gebeurt, merken we dit direct op: we waren niet succesvol in het veranderen van de staat van het "proces TV". Over het algemeen, als onze waarnemingen niet bij een bekend proces passen zijn wij verbaasd, geinteresseerd, of zelfs bang. Dit is een goed voorbeeld van hoe mensen hun omgeving beschouwen, gebaseerd op processen classificeren we al onze waarnemingen, en zijn we in staat te voorspellen welke waarnemingen komen gaan. Computers zijn traditioneel niet in staat om herkenning op diezelfde wijze te realiseren. Computerverwerking van signalen is vaak gebaseerd op eenvoudige "signatures", ofwel enkelvoudige eigenschappen waar direct naar gezocht wordt. Vaak zijn deze systemen heel specifiek en kunnen slechts zeer beperkte voorspellingen maken inzake de waargenomen omgeving. Dit proefschrift introduceert een algemene methode waarin omgevingsbeschrijvingen worden ingevoerd als processen: een nieuwe klasse van gegevensverwerkende systemen, genaamd Process Query Systems (PQS). Een PQS stelt de gebruiker in staat om snel en efficient een robuust omgevingsbewust systeem te bouwen, dat in staat is meerdere processen en meerdere instanties van processen te detecteren en volgen. Met behulp van PQS worden verschillende systemen gepresenteerd zo divers als de beveiliging van grote computer netwerken, tot het volgen van vissen in een vistank. Het enige verschil tussen al deze systemen is de procesmodellen die ingevoerd werden in de PQS. Deze technologie is een nieuw en veelbelovend vakgebied dat het potentieel heeft zeer succesvol te worden in alle vormen van digitale signaalverwerking.UBL - phd migration 201

    Analysis and design of security mechanisms in the context of Advanced Persistent Threats against critical infrastructures

    Get PDF
    Industry 4.0 can be defined as the digitization of all components within the industry, by combining productive processes with leading information and communication technologies. Whereas this integration has several benefits, it has also facilitated the emergence of several attack vectors. These can be leveraged to perpetrate sophisticated attacks such as an Advanced Persistent Threat (APT), that ultimately disrupts and damages critical infrastructural operations with a severe impact. This doctoral thesis aims to study and design security mechanisms capable of detecting and tracing APTs to ensure the continuity of the production line. Although the basic tools to detect individual attack vectors of an APT have already been developed, it is important to integrate holistic defense solutions in existing critical infrastructures that are capable of addressing all potential threats. Additionally, it is necessary to prospectively analyze the requirements that these systems have to satisfy after the integration of novel services in the upcoming years. To fulfill these goals, we define a framework for the detection and traceability of APTs in Industry 4.0, which is aimed to fill the gap between classic security mechanisms and APTs. The premise is to retrieve data about the production chain at all levels to correlate events in a distributed way, enabling the traceability of an APT throughout its entire life cycle. Ultimately, these mechanisms make it possible to holistically detect and anticipate attacks in a timely and autonomous way, to deter the propagation and minimize their impact. As a means to validate this framework, we propose some correlation algorithms that implement it (such as the Opinion Dynamics solution) and carry out different experiments that compare the accuracy of response techniques that take advantage of these traceability features. Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0 scenarios

    An analysis of the risk exposure of adopting IPV6 in enterprise networks

    Get PDF
    The IPv6 increased address pool presents changes in resource impact to the Enterprise that, if not adequately addressed, can change risks that are locally significant in IPv4 to risks that can impact the Enterprise in its entirety. The expected conclusion is that the IPv6 environment will impose significant changes in the Enterprise environment - which may negatively impact organisational security if the IPv6 nuances are not adequately addressed. This thesis reviews the risks related to the operation of enterprise networks with the introduction of IPv6. The global trends are discussed to provide insight and background to the IPv6 research space. Analysing the current state of readiness in enterprise networks, quantifies the value of developing this thesis. The base controls that should be deployed in enterprise networks to prevent the abuse of IPv6 through tunnelling and the protection of the enterprise access layer are discussed. A series of case studies are presented which identify and analyse the impact of certain changes in the IPv6 protocol on the enterprise networks. The case studies also identify mitigation techniques to reduce risk
    corecore