2,121 research outputs found

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    MSUO Information Technology and Geographical Information Systems: Common Protocols & Procedures. Report to the Marine Safety Umbrella Operation

    Get PDF
    The Marine Safety Umbrella Operation (MSUO) facilitates the cooperation between Interreg funded Marine Safety Projects and maritime stakeholders. The main aim of MSUO is to permit efficient operation of new projects through Project Cooperation Initiatives, these include the review of the common protocols and procedures for Information Technology (IT) and Geographical Information Systems (GIS). This study carried out by CSA Group and the National Centre for Geocomputation (NCG) reviews current spatial information standards in Europe and the data management methodologies associated with different marine safety projects. International best practice was reviewed based on the combined experience of spatial data research at NCG and initiatives in the US, Canada and the UK relating to marine security service information and acquisition and integration of large marine datasets for ocean management purposes. This report identifies the most appropriate international data management practices that could be adopted for future MSUO projects

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Wireless Sensor Networks and Real-Time Locating Systems to Fight against Maritime Piracy

    Get PDF
    There is a wide range of military and civil applications where Wireless Sensor Networks (WSNs) and Multi-Agent Systems (MASs) can be used for providing context-awareness for troops and special corps. On the one hand, WSNs comprise an ideal technology to develop Real-Time Locating Systems (RTLSs) aimed at indoor environments, where existing global navigation satellite systems do not work properly. On the other hand, agent-based architectures allow building autonomous and robust systems that are capable of working on highly dynamic scenarios. This paper presents two piracy scenarios where the n-Core platform can be applied. n-Core is a hardware and software platform intended for developing and deploying easily and quickly a wide variety of WSNs applications based on the ZigBee standard. In the first scenario a RTLS is deployed to support boarding and rescue operations. In the second scenario a multi-agent system is proposed to detect the unloading of illegal traffic of merchandise at ports

    Impacts of e-collaboration tools for development of rural areas

    Get PDF
    Information and communication technologies (ICT) are a powerful driver for economy-wide productivity, growth and jobs – and are arguably Europe’s best-bet investment for the future. The ICT in innovation processes and acts play more and more important role in rural areas. The regional innovation performance is different in regions and lower in rural areas.The regional innovation performance is different in regions and lower in rural areas. The ICT acts play more and more important role in innovation processes in rural areas. The new requirements for developing new application and services is to increase the wireless and broadband services. Some EU supported RTD project served to develop the agri-food sector and rural areas. The National Development Strategies and Rural Development Strategies may help to grow the broadband penetration in rural areas. Collaborative Working Environment can be perceived as the tools, technologies, services and environments supporting individual persons in their working tasks to become more creative, innovative and productive involving the direct or indirect interaction (collaboration) with other individuals, groups or organizations. Collaborative platforms providing sophisticated upper middleware services required for environment and person-aware distributed collaboration. There were more EU projects focusing to collaborative tools and systems. The objective of the AMI@netfood project was to support the implementation of the IST Research Priority and Framework Programme, providing a long-term vision on future trends on Scientific and Technology Research oriented to the development and application of Ambient Intelligence technologies to the agri-food domain. The e-Learning and e-Training are more and more important domain where we can use collaborative tools, collaborative working environment. The European NODES project had a target group who are liniving in rural areas. For agriculture and rural areas the C@R project may contribute to design the European standard. C@R will design software tools to help people in rural areas to collaborate despite of the separation in space and in time. The Digital Business Ecosystem platform and tools may help for co-operation of SMS in rural areas

    Ubiquity of Client Access in Heterogeneous Access Environment, Journal of Telecommunications and Information Technology, 2014, nr 3

    Get PDF
    With popularization of mobile computing and diverse offer of mobile devices providing functionality comparable to personal computers, the necessity of providing network access for such users cannot be disputed. The requirement is further reinforced by emergence of general purpose mobile operating systems which provide their full functionality only with network connectivity available and popular XaaS (Everything as a Service) approach. In this situation and combined with the fact that most Internet-based services are able to function efficiently even in best effort environment, requirement of ubiquity of network access becomes one of the most important elements of today’s computing environment. This paper presents a general overview of the the vast group of mechanisms and technologies utilized in modern attempts to efficiently provide ubiquity on network access in heterogeneous environment of today’s access systems. It starts with division of users interested in ubiquitous network access into broad groups of common interest, complete with their basic requirements and access characteristics, followed by a survey of both already popular and new wireless technologies suitable to provide such access. Then a general discussion of most important challenges which must be addressed while attempting to fulfill the above goal is provided, addressing topics such as handover control and mobility management

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    Rapidly deployable, self forming, wireless networks for maritime interdiction operations

    Get PDF
    The term "Maritime Interdiction Operations" usually refers to Visit, Board, Search and Seizure (VBSS) operations executed today all over the world. These operations are conducted as a part of the maritime law enforcement policy of each country inside their respective territorial waters or as a part of the homeland security requirements as they are mandated today by the global war against terrorism. Very often lately, they are conducted by allied maritime forces in international waters as well. Although such operations might seem quite simple in execution, the global war against terrorism has dramatically increased their level of complexity. In the past, searching cargo ships for illegal or contraband cargo was not that complicated or that important for national security, but now, searching for non-proliferation, radiological or bio-chemical material, as well as for possible terrorists among the crew members of a ship, is a very complex operation that cannot tolerate mistakes or omissions. This thesis examines the requirements posed by a boarding team, either from the navy or the law enforcement community, on information flow from and to them, in order to enhance their situational awareness and decision making capability during Maritime Interdiction Operations. That information flow is provided by several wireless network technologies, implemented during field trials, as part of the NPS CENETIX (Center for Network Innovation and Experimentation) lab s maritime subset of experimentation. During these field trials, a wireless extension of the internet is deployed to the sea, allowing the boarding team to access information and collaborate with remotely located experts and respective operational commands, the technical aspects, the benefits and shortcomings of the utilized technologies and collaborative tools are screened against the maritime war fighter's operational requirements.http://archive.org/details/rapidlydeployabl109452647Approved for public release; distribution is unlimited
    corecore