826 research outputs found

    A Comprehensive Survey on Vector Database: Storage and Retrieval Technique, Challenge

    Full text link
    A vector database is used to store high-dimensional data that cannot be characterized by traditional DBMS. Although there are not many articles describing existing or introducing new vector database architectures, the approximate nearest neighbor search problem behind vector databases has been studied for a long time, and considerable related algorithmic articles can be found in the literature. This article attempts to comprehensively review relevant algorithms to provide a general understanding of this booming research area. The basis of our framework categorises these studies by the approach of solving ANNS problem, respectively hash-based, tree-based, graph-based and quantization-based approaches. Then we present an overview of existing challenges for vector databases. Lastly, we sketch how vector databases can be combined with large language models and provide new possibilities

    STRATEGIES TO EVALUATE THE VISIBILITY ALONG AN INDOOR PATH IN A POINT CLOUD REPRESENTATION

    Get PDF

    Modeling and rendering architecture from photographs

    Full text link

    Image Based Indoor Navigation

    Get PDF
    Over the last years researchers proposed numerous indoor localization and navigation systems. However, solutions that use WiFi or Radio Frequency Identification require infrastructure to be deployed in the navigation area and infrastructure less techniques, e.g. the ones based on mobile cell ID or dead reckoning suffer from large accuracy errors. In this Thesis, we present a novel approach of infrastructure-less indoor navigation system based on computer vision Structure from Motion techniques. We implemented a prototype localization and navigation system which can build a navigation map using area photos as input and accurately locate a user in the map. In our client-server architecture based system, a client is a mobile application, which allows a user to locate her or his position by simply taking a photo. The server handles map creation, localization queries and path finding. After the implementation, we evaluated the localization accuracy and latency of the system by benchmarking navigation queries and the model creation algorithm. The system is capable of successfully navigating in Aalto University computer science department library. We were able to achieve an average error of 0.26 metres for successfully localised photos. In the Thesis, we also present challenges that we solved to adapt computer vision techniques for localisation purposes. Finally we observe the possible future work topics to adapt the system to a wide use
    • …
    corecore