3,496 research outputs found

    Virtual Reality and Spatial Augmented Reality for Social Inclusion: The “Includiamoci” Project

    Get PDF
    Extended Reality (XR) technology represents an innovative tool to address the challenges of the present, as it allows for experimentation with new solutions in terms of content creation and its fruition by different types of users. The potential to modulate the experience based on the target audience’s needs and the project’s objectives makes XR suitable for creating new accessibility solutions. The “Includiamoci” project was carried out with the aim of creating workshops on social inclusion through the combination of art and technology. Specifically, the experimentation involved ten young people between the ages of 28 and 50, with cognitive disabilities, who participated in Extended Reality workshops and Art Therapy workshops. In the course of these activities, the outputs obtained were two: a virtual museum, populated by the participants’ works, and a digital set design for a theatrical performance. Through two tests, one on user experience (UX) and one on the degree of well-being, the effectiveness of the entire project was evaluated. In conclusion, the project demonstrated how the adopted solutions were appropriate to the objectives, increasing our knowledge of UX for a target audience with specific user needs and using XR in the context of social inclusion

    Digital technologies applied to the accessible management of museums. The first experiments carried out at the Museum of Oriental Art of Turin

    Get PDF
    [EN] The proposed research focuses on the museum context of the city of Turin (Italy), within an ongoing framework agreement between the Politecnico di Torino and the Museum of Oriental Art (MAO). It aims at the construction of a model for the management of the workflow that includes the digital survey, the 3D virtual modelling and the digital fabrication of the tactile models of the artworks and the exhibition spaces. The paper starts with an overview on the methods of conservation and dissemination of cultural and architectural heritage, on the accessibility of museums and on tactile perception and graphics. It presents the first outcomes of the designed workflow with a special focus on the digital fabrication experiments on the vaulted system of the atrium of Palazzo Mazzonis (MAO home). The founding idea is that tactile exploration of artifacts helps the visitor engagement, making the museum experience more educationally incisive and more inclusive, in a “Design for All” perspective.[ES] La investigación propuesta se centra en el contexto museístico de la ciudad de Turín (Italia), dentro de un acuerdo marco en curso entre el Politecnico di Torino y el Museo de Arte Oriental (MAO). Su objetivo es la construcción de un modelo para la gestión del flujo de trabajo que parte de la digitalización de las obras de arte y de los espacios y termina con la realización de modelos táctiles. El artículo comienza con una visión general sobre los métodos de conservación y difusión del patrimonio cultural y arquitectónico sobre la percepción y los gráficos táctiles. Presenta los primeros resultados del flujo de trabajo diseñado, centrándose especialmente en los experimentos de fabricación digital en el sistema abovedado del atrio del Palazzo Mazzonis (casa del MAO). La idea básica es que la exploración táctil de los artefactos ayuda a la participación del visitante, haciendo que la experiencia del museo sea más incisiva desde el punto de vista educativo y más inclusiva, en una perspectiva de “Diseño para todos”.This research is carried out within the framework of an agreement between the Museo d’Arte Orientale and the Politecnico di Torino. I would like to thank Dr Marco Guglielminotti Trivel, Director of the Museum, Dr Claudia Ramasso, museum curator and Mrs Patrizia Bosio, from the Technical and Security Office for having favored the current research. In addition, I would like to thank Dr Franco Lepore Disability Manager of the Municipality of Turin, and Arch. Rocco Rolli, founder of Tactile Vision Onlus, for their willingness to help me in the management of the model testing phase that will take place soon.Ronco, F. (2021). Digital technologies applied to the accessible management of museums. The first experiments carried out at the Museum of Oriental Art of Turin. EGE Revista de Expresión Gráfica en la Edificación. 0(14):49-61. https://doi.org/10.4995/ege.2021.15661OJS4961014Amoruso, G. 2019. "UID PhD Summer School. Rilievo del patrimonio culturale e rappresentazione inclusiva". Diségno, n. 4, p. 261-264. ISSN 2533-2899Anagnostakis, G., Antoniou, M., Kardamitsi, E., Sachinidis, T., Koutsabasis, P., Stavrakis, S., Vosinakis, M., Zissis, D. 2016. "Accessible museum collections for the visually impaired: combining tactile exploration, audio descriptions and mobile gestures". In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct (MobileHCI '16). New York: Association for Computing Machinery, p. 1021-1025. https://doi.org/10.1145/2957265.2963118Balletti, C., Ballarin, M. 2019. "An Application of Integrated 3D Technologies for Replicas in Cultural Heritage". ISPRS Int. J. Geo-Inf., n. 8, p. 285-313. https://doi.org/10.3390/ijgi8060285Barberà Giné, A. 2018. "Fotogrametría para la conservación-restauración de bienes culturales". Unicum, n. 17, p. 153-162. ISSN: 1579-3613.Bo, P., Pottmann, H., Kilian, M., Wang, W., Wallner, J. 2011. "Circular arc structures". ACM Trans. Graph., vol. 30, n. 4, p. 101:1-101:11. ISSN 0730-0301. https://doi.org/10.1145/2010324.1964996Brie, M., Morice, J. C. 1996. "Il disegno in rilievo: oggetto di conoscenza". XY, Dimensioni del Disegno, n. 26, p. 38-51.Bruno, A., Ricca, F. 2010. Il Museo d'Arte Orientale MAO. Torino: Allemandi, p. 3-24. ISBN 978-88-422-1699-5.Bruno, Ivana. 2019. "Comunicazione e accessibilità culturale. L'esperienza di Museo Facile". Il capitale culturale, n. 20, p. 297-325. http://dx.doi.org/10.13138/2039-2362/2068.Candling, F. 2010. Art, Museums and Touch. Manchester: Manchester University Press. ISBN 978-0719079337Clini, P., Frapiccini, N., Quattrini, R., Nespeca, R. 2018. "Toccare l'arte e guardare con altri occhi. Una via digitale per la rinascita dei musei archeologici nell'epoca della riproducibilità dell'opera d'arte". In Luigini, Alessandro and Panciroli, Chiara eds. Ambienti digitali per l'educazione all'arte e al patrimonio. Milano: FrancoAngeli s.r.l., p. 97-113. ISBN 9788891773333. http://library.oapen.org/handle/20.500.12657/25364 [accessed on 2020/05/04].D'Agnano, F., Balletti, C., Guerra, F., Vernier, P.. 2015. "Tooteko: A case study of augmented reality for an accessible cultural heritage. Digitization, 3D printing and sensors for an audio-tactile experience". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 5W4, p. 207-213. https://doi.org/10.5194/isprsarchives-XL-5-W4-207-2015De Rubertis, R. (ed.) 1996. "Il disegno oscuro". XY Dimensioni del Disegno, n. 26Díaz Gómez, F., Jiménez,Peiró J., Barreda Benavent, A., Asensi Recuenco, B., Hervás Juan, J. 2015. " Modelado 3D para la generación de patrimonio virtual. 3D modeling for the generation of virtual heritage". Virtual Archaeology Review, vol. 6, no 12, p. 29-37. ISSN 1989-9947. https://doi.org/10.4995/var.2015.4150Empler, T. 1996. Il "disegno in rilievo negli Istituti di Ricerca italiani e francesi". XY, Dimensioni del Disegno, n. 26, p. 5-7.Empler, T. 2013. "Universal Design: ruolo del Disegno e Rilievo". Disegnare. Idee Immagini, n. 46, p. 52-63. ISBN 978-88-492-1835-0.Empler, T., Fusinetti, A. 2019. "Rappresentazione visuo-tattile: comunicazione tattile per i disabili visivi". In Belardi, Paolo ed. UID per il disegno:2019. Riflessioni: l'arte del disegno/ il disegno dell'arte. Roma : Gangemi, p 1563-1572. ISBN 978-88-492-3762-7. https://www.torrossa.com/it/resources/an/4557553 [accessed on 2020/05/04].García Lucerga, M. A. 1993. El acceso de las personas deficientes visuales al mundo de los museos. Madrid: Organización Nacional de Ciegos Españoles, Sección de Cultura D.L. ISBN 84-87277-25-X. https://portal.once.es/bibliotecas/fondo-bibliografico-discapacidad-visual [accessed on 2020/05/04].Levi, F., Rolli, R. 1994. Disegnare per le mani. Manuale di disegno in rilievo. Torino: Silvio Zamorani Editore. ISBN: 9788871580388.Montella, M., Petraroia, P., Manacorda, Daniele, Di Macco, Michela. 2016. In Feliciati, Pierluigi, ed. La valorizzazione dell'eredità culturale in Italia, Atti del Convegno (Macerata 5-6 novembre 2015), Supplemento, n. 5. Macerata: eum edizioni, p. 13-36. ISBN 978-88-6056-485-6.Nasini, L., Isawi, H. 2006. Una geometria per comprendere lo spazio senza percepirlo visivamente. Roma: Officina Edizioni. ISBN: 9788860490070.Pérez de Andrés, C., Ramos Fuentes, A. 1994. Museos abiertos a todos los sentidos : acoger mejor a las personas minusválidas. Salamanca: Ministerio de Cultura, Organización Nacional de Ciegos Españoles, Sección de Cultura 1994. ISBN 84-87277-40-3. https://portal.once.es/bibliotecas/fondo-bibliografico-discapacidad-visual [accessed on 2020/05/04].Petrelli, D., Ciolfi, L., Van DiJk, D., Horneker, E., Not, E., Schmidt A. 2013. "Integrating material and digital: A new way for cultural heritage". Interactions: new visions of human-computer, n. 20, p. 58-63. https://doi.org/10.1145/2486227.2486239Photoworks: 3D Photo Printing Products. URL: https://www.3dphotoworks.com/product [accessed on 2020/05/04].Reichinger, A., Neumüller, M., Rist, F., Maierhofer, S., Purgathofer, W. 2012. "Computer-Aided Design of Tactile Models. Taxonomy and Case Studies". In Miesenberger, Klaus et al. eds. ICCHP 2012, Part II, LNCS 7383, p. 497-504. ISBN 978-3-642-31533-6. https://doi.org/10.1007/978-3-642-31534-3_73Reichinger, A., Fuhrmann, A., Maierhofer, S., Purgathofer, W. 2016. "Gesture-Based Interactive Audio Guide on Tactile Reliefs". In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '16). New York: Association for Computing Machinery, p. 91-100. https://doi.org/10.1145/2982142.2982176Samaroudi, M., Echavarria, K.R., Rodriguez, Song, R., Evans, R. 2017. "The Fabricated Diorama: Tactile Relief and Context-aware Technology for Visually Impaired Audiences". In Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage (GCH '17). Goslar: Eurographics Association, p 201-206. https://doi.org/10.2312/gch.20171315.Sdegno, A. 2018. "Rappresentare l'opera d'arte con tecnologie digitali: dalla realtà aumentata alle esperienze tattili". In Luigini, Alessandro and Panciroli, Chiara eds. Ambienti digitali per l'educazione all'arte e al patrimonio. Milano: FrancoAngeli s.r.l., p. 257-272. ISBN 9788891773333Secchi, L. 2018. "Toccare con gli occhi e vedere con le mani. Funzioni cognitive e conoscitive dell'educazione estetica". Ocula, vol.19, n.19, p. 15-31. https://doi.org/10.12977/ocula2018-9Shi, L., Zelzer, I., Feng, C., Azenkot, S. 2016. "Tickers and Talker: An Accessible Labeling Toolkit for 3D Printed Models". In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). New York: Association for Computing Machinery, p. 4896-4907. https://doi.org/10.1145/2858036.2858507Spallone, R., Vitali, M. 2017. Star-shaped and Planterian Vaults in the Baroque Atria of Turin. Ariccia: Aracne. ISBN 978-88-255-0472-9Wilson, P. F., Stott, J., Warnett, J. M., Attridge, A., Smith, M. P., Williams, M. A. 2017. "Evaluation of touchable 3D-printed replicas in museums". Curator. The Museum Journal, vol. 60, n. 4, p. 445-465. https://doi.org/10.1111/cura.1224

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    Exploring the potential of physical visualizations

    Get PDF
    The goal of an external representation of abstract data is to provide insights and convey information about the structure of the underlying data, therefore helping people execute tasks and solve problems more effectively. Apart from the popular and well-studied digital visualization of abstract data there are other scarcely studied perceptual channels to represent data such as taste, sound or haptic. My thesis focuses on the latter and explores in which ways human knowledge and ability to sense and interact with the physical non-digital world can be used to enhance the way in which people analyze and explore abstract data. Emerging technological progress in digital fabrication allow an easy, fast and inexpensive production of physical objects. Machines such as laser cutters and 3D printers enable an accurate fabrication of physical visualizations with different form factors as well as materials. This creates, for the first time, the opportunity to study the potential of physical visualizations in a broad range. The thesis starts with the description of six prototypes of physical visualizations from static examples to digitally augmented variations to interactive artifacts. Based on these explorations, three promising areas of potential for physical visualizations were identified and investigated in more detail: perception & memorability, communication & collaboration, and motivation & self-reflection. The results of two studies in the area of information recall showed that participants who used a physical bar chart retained more information compared to the digital counterpart. Particularly facts about maximum and minimum values were be remembered more efficiently, when they were perceived from a physical visualization. Two explorative studies dealt with the potential of physical visualizations regarding communication and collaboration. The observations revealed the importance on the design and aesthetic of physical visualizations and indicated a great potential for their utilization by audiences with less interest in technology. The results also exposed the current limitations of physical visualizations, especially in contrast to their well-researched digital counterparts. In the area of motivation we present the design and evaluation of the Activity Sculptures project. We conducted a field study, in which we investigated physical visualizations of personal running activity. It was discovered that these sculptures generated curiosity and experimentation regarding the personal running behavior as well as evoked social dynamics such as discussions and competition. Based on the findings of the aforementioned studies this thesis concludes with two theoretical contributions on the design and potential of physical visualizations. On the one hand, it proposes a conceptual framework for material representations of personal data by describing a production and consumption lens. The goal is to encourage artists and designers working in the field of personal informatics to harness the interactive capabilities afforded by digital fabrication and the potential of material representations. On the other hand we give a first classification and performance rating of physical variables including 14 dimensions grouped into four categories. This complements the undertaking of providing researchers and designers with guidance and inspiration to uncover alternative strategies for representing data physically and building effective physical visualizations.Um aus abstrakten Daten konkrete Aussagen, komplexe Zusammenhänge oder überraschende Einsichten gewinnen zu können, müssen diese oftmals in eine, für den Menschen, anschauliche Form gebracht werden. Eine weitverbreitete und gut erforschte Möglichkeiten ist die Darstellung von Daten in visueller Form. Weniger erforschte Varianten sind das Verkörpern von Daten durch Geräusche, Gerüche oder physisch ertastbare Objekte und Formen. Diese Arbeit konzentriert sich auf die letztgenannte Variante und untersucht wie die menschlichen Fähigkeiten mit der physischenWelt zu interagieren dafür genutzt werden können, das Analysieren und Explorieren von Daten zu unterstützen. Der technische Fortschritt in der digitalen Fertigung vereinfacht und beschleunigt die Produktion von physischen Objekten und reduziert dabei deren Kosten. Lasercutter und 3D Drucker ermöglichen beispielsweise eine maßgerechte Fertigung physischer Visualisierungen verschiedenster Ausprägungen hinsichtlich Größe und Material. Dadurch ergibt sich zum ersten Mal die Gelegenheit, das Potenzial von physischen Visualisierungen in größerem Umfang zu erforschen. Der erste Teil der Arbeit skizziert insgesamt sechs Prototypen physischer Visualisierungen, wobei sowohl statische Beispiele beschrieben werden, als auch Exemplare die durch digital Inhalte erweitert werden oder dynamisch auf Interaktionen reagieren können. Basierend auf den Untersuchungen dieser Prototypen wurden drei vielversprechende Bereiche für das Potenzial physischer Visualisierungen ermittelt und genauer untersucht: Wahrnehmung & Einprägsamkeit, Kommunikation & Zusammenarbeit sowie Motivation & Selbstreflexion. Die Ergebnisse zweier Studien zur Wahrnehmung und Einprägsamkeit von Informationen zeigten, dass sich Teilnehmer mit einem physischen Balkendiagramm an deutlich mehr Informationen erinnern konnten, als Teilnehmer, die eine digitale Visualisierung nutzten. Insbesondere Fakten über Maximal- und Minimalwerte konnten besser im Gedächtnis behalten werden, wenn diese mit Hilfe einer physischen Visualisierung wahrgenommen wurden. Zwei explorative Studien untersuchten das Potenzial von physischen Visualisierungen im Bereich der Kommunikation mit Informationen sowie der Zusammenarbeit. Die Ergebnisse legten einerseits offen wie wichtig ein ausgereiftes Design und die Ästhetik von physischen Visualisierungen ist, deuteten anderseits aber auch darauf hin, dass Menschen mit geringem Interesse an neuen Technologien eine interessante Zielgruppe darstellen. Die Studien offenbarten allerdings auch die derzeitigen Grenzen von physischen Visualisierungen, insbesondere im Vergleich zu ihren gut erforschten digitalen Pendants. Im Bereich der Motivation und Selbstreflexion präsentieren wir die Entwicklung und Auswertung des Projekts Activity Sculptures. In einer Feldstudie über drei Wochen erforschten wir physische Visualisierungen, die persönliche Laufdaten repräsentieren. Unsere Beobachtungen und die Aussagen der Teilnehmer ließen darauf schließen, dass die Skulpturen Neugierde weckten und zum Experimentieren mit dem eigenen Laufverhalten einluden. Zudem konnten soziale Dynamiken entdeckt werden, die beispielsweise durch Diskussion aber auch Wettbewerbsgedanken zum Ausdruck kamen. Basierend auf den gewonnen Erkenntnissen durch die erwähnten Studien schließt diese Arbeit mit zwei theoretischen Beiträgen, hinsichtlich des Designs und des Potenzials von physischen Visualisierungen, ab. Zuerst wird ein konzeptionelles Framework vorgestellt, welches die Möglichkeiten und den Nutzen physischer Visualisierungen von persönlichen Daten veranschaulicht. Für Designer und Künstler kann dies zudem als Inspirationsquelle dienen, wie das Potenzial neuer Technologien, wie der digitalen Fabrikation, zur Darstellung persönlicher Daten in physischer Form genutzt werden kann. Des Weiteren wird eine initiale Klassifizierung von physischen Variablen vorgeschlagen mit insgesamt 14 Dimensionen, welche in vier Kategorien gruppiert sind. Damit vervollständigen wir unser Ziel, Forschern und Designern Inspiration und Orientierung zu bieten, um neuartige und effektvolle physische Visualisierungen zu erschaffen

    Virtual sculpting and 3D printing for young people with disabilities

    Get PDF
    In this paper, we present the SHIVA project which was designed to provide virtual sculpting tools for young people with complex disabilities, to allow them to engage with artistic and creative activities that they might otherwise never be able to access. Modern 3D printing then allows us to physically build their creations. To achieve this, we combined our expertise in education, accessible technology, user interfaces and geometric modelling. We built a generic accessible graphical user interface (GUI) and a suitable geometric modelling system and used these to produce two prototype modelling exercises. These tools were deployed in a school for students with complex disabilities and are now being used for a variety of educational and developmental purposes. In this paper, we present the project's motivations, approach and implementation details together with initial results, including 3D printed objects designed by young people who have disabilties

    The Virtual Reconstruction of the Aesculapius and Hygeia Statues from the Sanctuary of Isis in Lilybaeum: Methods and Tools for Ancient Sculptures’ Enhancement

    Get PDF
    Thanks to recent technological developments in 3D surveys, computer graphics and virtual reality, new scenarios have been opened for the documentation and enhancement of ancient sculptures. When not totally preserved, sculptures can be digitally reproduced, modified and visualized to simulate their physical or virtual reconstruction in a non-invasive way for specialists or for dissemination aims. The virtual sculptural reconstruction process starts usually from the 3D survey of real fragments, and then continues by integrating missing parts with 3D modelling techniques by means of source evaluation. Along with primary data sources (reality-based model), secondary data sources (photos, drawings and 3D models of similar sculptures) can be directly used in the reconstruction process. This approach has a double advantage of making the reconstruction activities easier and less arbitrary, contributing to a decrease in the degree of uncertainty for the sculptural reconstruction work, also thanks to many iconographic comparisons to ancient copies. Moreover, virtual reconstruction can be easily visualized alongside a scalable rendering system using open-source Web3D apps and platforms, accessing information, 3D models and descriptions in order to enhance the experience of artworks. Inspecting theoretical and technical approaches, this work aims at establishing how primary and secondary data sources can be effectively used in sculptural reconstruction workflows, and how 3D outputs can be applied to implement digital sculptural heritage exploitation for museums and cultural institutions. The statues of Aesculapius and Hygeia from the sanctuary of Isis in Lilybaeum (Marsala, Italy) were chosen as a case study

    Educating Urban Designers using Augmented Reality and Mobile Learning Technologies / Formación de Urbanistas usando Realidad Aumentada y Tecnologías de Aprendizaje Móvil

    Get PDF
    El presente artículo describe una experiencia educativa usando Realidad Aumentada (RA) en dispositivos móviles para el aprendizaje de conceptos de diseño urbano en estudiantes del Grado de Arquitectura. A tal efecto, se ha diseñado un ejercicio práctico sobre la casuística de un proyecto real, donde los estudiantes deben diseñar una escultura para una plaza pública en función de los parámetros del entorno, debiendo controlar sus parámetros, la forma, escala, localización, materiales, etc. El ejercicio se visualiza y controla mediante plataformas móviles de RA, lo que permite enfatizar un aprendizaje colaborativo mediante el estudio de las propuestas del resto de estudiantes in situ. Para la evaluación del proceso, tanto a nivel de usabilidad como de mejora del proceso educativo, hemos dividido a los estudiantes en dos grupos: uno primero de control, que cursó un sistema tradicional de la asignatura en base a ejercicios de laboratorio, y un grupo experimental, que utilizó el sistema descrito en la ubicación real del proyecto. Al final del curso, y en base a los resultados obtenidos y discutidos en el presente artículo, el grupo experimental obtuvo mejores notas finales, al mismo tiempo que se constata un incremento en el grado de satisfacción y motivación de los estudiantes que han utilizado la propuesta experimental. Este aspecto nos permite reafirmar la utilidad del método en la mejora educativa en el ámbito donde se circunscribe la experiencia.Postprint (author's final draft

    Opportunities and challenges for data physicalization

    Get PDF
    Physical representations of data have existed for thousands of years. Yet it is now that advances in digital fabrication, actuated tangible interfaces, and shape-changing displays are spurring an emerging area of research that we call Data Physicalization. It aims to help people explore, understand, and communicate data using computer-supported physical data representations. We call these representations physicalizations, analogously to visualizations -- their purely visual counterpart. In this article, we go beyond the focused research questions addressed so far by delineating the research area, synthesizing its open challenges and laying out a research agenda
    corecore