5,500 research outputs found

    Extraction and Analysis of Facebook Friendship Relations

    Get PDF
    Online Social Networks (OSNs) are a unique Web and social phenomenon, affecting tastes and behaviors of their users and helping them to maintain/create friendships. It is interesting to analyze the growth and evolution of Online Social Networks both from the point of view of marketing and other of new services and from a scientific viewpoint, since their structure and evolution may share similarities with real-life social networks. In social sciences, several techniques for analyzing (online) social networks have been developed, to evaluate quantitative properties (e.g., defining metrics and measures of structural characteristics of the networks) or qualitative aspects (e.g., studying the attachment model for the network evolution, the binary trust relationships, and the link prediction problem).\ud However, OSN analysis poses novel challenges both to Computer and Social scientists. We present our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations, is restricted; thus, we acquired the necessary information directly from the front-end of the Web site, in order to reconstruct a sub-graph representing anonymous interconnections among a significant subset of users. We describe our ad-hoc, privacy-compliant crawler for Facebook data extraction. To minimize bias, we adopt two different graph mining techniques: breadth-first search (BFS) and rejection sampling. To analyze the structural properties of samples consisting of millions of nodes, we developed a specific tool for analyzing quantitative and qualitative properties of social networks, adopting and improving existing Social Network Analysis (SNA) techniques and algorithms

    Crawling Facebook for Social Network Analysis Purposes

    Get PDF
    We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that we developed to analyze specific properties of such social-network graphs, i.e., among others, degree distribution, centrality measures, scaling laws and distribution of friendship.\u

    Network Sampling: From Static to Streaming Graphs

    Full text link
    Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms

    Bayesian Inference of Online Social Network Statistics via Lightweight Random Walk Crawls

    Get PDF
    Online social networks (OSN) contain extensive amount of information about the underlying society that is yet to be explored. One of the most feasible technique to fetch information from OSN, crawling through Application Programming Interface (API) requests, poses serious concerns over the the guarantees of the estimates. In this work, we focus on making reliable statistical inference with limited API crawls. Based on regenerative properties of the random walks, we propose an unbiased estimator for the aggregated sum of functions over edges and proved the connection between variance of the estimator and spectral gap. In order to facilitate Bayesian inference on the true value of the estimator, we derive the approximate posterior distribution of the estimate. Later the proposed ideas are validated with numerical experiments on inference problems in real-world networks

    iCrawl: Improving the Freshness of Web Collections by Integrating Social Web and Focused Web Crawling

    Full text link
    Researchers in the Digital Humanities and journalists need to monitor, collect and analyze fresh online content regarding current events such as the Ebola outbreak or the Ukraine crisis on demand. However, existing focused crawling approaches only consider topical aspects while ignoring temporal aspects and therefore cannot achieve thematically coherent and fresh Web collections. Especially Social Media provide a rich source of fresh content, which is not used by state-of-the-art focused crawlers. In this paper we address the issues of enabling the collection of fresh and relevant Web and Social Web content for a topic of interest through seamless integration of Web and Social Media in a novel integrated focused crawler. The crawler collects Web and Social Media content in a single system and exploits the stream of fresh Social Media content for guiding the crawler.Comment: Published in the Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries 201

    A data-driven analysis to question epidemic models for citation cascades on the blogosphere

    Full text link
    Citation cascades in blog networks are often considered as traces of information spreading on this social medium. In this work, we question this point of view using both a structural and semantic analysis of five months activity of the most representative blogs of the french-speaking community.Statistical measures reveal that our dataset shares many features with those that can be found in the literature, suggesting the existence of an identical underlying process. However, a closer analysis of the post content indicates that the popular epidemic-like descriptions of cascades are misleading in this context.A basic model, taking only into account the behavior of bloggers and their restricted social network, accounts for several important statistical features of the data.These arguments support the idea that citations primary goal may not be information spreading on the blogosphere.Comment: 18 pages, 9 figures, to be published in ICWSM-13 proceeding
    • …
    corecore