13,816 research outputs found

    Development and standardization of a protocol for sperm cryopreservation of two important commercial oyster species

    Get PDF
    Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015Aquaculture activities have a huge contribution for the world food production and their development is extremely necessary to answer to the lack of resources, especially to the demand for seafood. Bivalve production, especially Crassostrea angulata (Portuguese oyster) has been practiced from long ago, and although its production suffered several constraints, in recent years it has been increasing the interests in recovering production and in preserving nature populations. In this sense, new research needs to guarantee an efficient and economically viable production, contributing to a relatively new environmental concern: wild population restoration. Nowadays, pure wild populations of Crassostrea angulata are rare to find due to multiple factors that affected this oyster industry. Cryopreservation technology could promote alternative techniques to contribute for the resource management efficiency of the Portuguese oyster and associated economic activity. In this sense, standardization of procedures is important for Crassostrea genus. At the present there are no cryopreservation reports on Crassostrea angulata sperm, and therefore, one of the objectives of this work is to design a cryopreservation protocol for this species, testing the more adequate cryoprotectant solution, its ideal concentration, different freezing rates and types of containers. In parallel, this stablished protocol was applied in Crassostrea gigas and compared to other previously published for this species. Analysis of motility, viability, agglutination and fertilizations were used as guides for the establishment of the protocol in C. angulata. Moreover, ATP content, DNA fragmentation and lipid peroxidation were done in order to standardize the same protocol for both species. Movement analysis were assessed by CASA system, viability through common staining techniques and flow cytometer, agglutination was quantified according to the scale developed by Dong et al., (2007), ATP content determined by bioluminescence, Comet assay was performed to quantify the DNA fragmentation and lipid peroxidation determined spectrophotometrically by measuring the absorbance of the malondialdehyde (MDA). Significant differences were observed (p<0.05) for lipid peroxidation and fertilization trials whereas ATP content and fragmentation of DNA of the cryopreserved samples did not differ significantly from the control. In C. gigas, the same analysis were performed and did not reveal post-thaw quality differences in the samples cryopreserved with 10% DMSO. The established protocol revealed to be effective and with a low degree of cellular damage on C. angulata sperm and, at the same time, viable to apply in other species, such as Crassostrea gigas

    Development and distribution of the non-indigenous Pacific oyster (Crassostrea gigas) in the Dutch Wadden Sea

    Get PDF
    Pacific oysters (Crassostrea gigas) were first observed in the Dutch Wadden Sea near Texel in 1983. The population increased slowly in the beginning but grew exponentially from the mid-1990s onwards, although now some stabilisation seems to be occurring. They occur on a variety of substrates such as mussel beds (Mytilus edulis), shell banks, dikes and poles. After initial settlement spat may fall on older individuals and congregate to dense clumps and subsequently form reefs. Individual Pacific oysters grow 3–4 cm long in their first year and 2–3 cm in their second year. Many mussel beds (Mytilus edulis) are slowly taken over by Pacific oysters, but there are also several reports of mussel spat settling on Pacific oyster reefs. This might in the end result in combined reefs. Successful Pacific oyster spat fall seems to be related to high summer temperatures, but also after mild summers much spat can be found on old (Pacific oyster) shells. Predation is of limited importance. Mortality factors are unknown, but every now and then unexplained mass mortality occurs. The gradual spread of the Pacific oyster in the Dutch Wadden Sea is documented in the first instance based on historical and anecdotal information. At the start of the more in-depth investigation in 2002, Pacific oysters of all size classes were already present near Texel. Near Ameland the development could be followed from the first observed settlement. On dense reefs each square metre may contain more than 500 adult Pacific oysters, weighing more than 100 kg per m² fresh weigh

    Dilution of seawater affects the Ca2 + transport in the outer mantle epithelium of crassostrea gigas

    Get PDF
    Varying salinities of coastal waters are likely to affect the physiology and ion transport capabilities of calcifying marine organisms such as bivalves. To investigate the physiological effect of decreased environmental salinity in bivalves, adult oysters (Crassostrea gigas) were exposed for 14 days to 50% seawater (14) and the effects on mantle ion transport, electrophysiology and the expression of Ca2+ transporters and channels relative to animals maintained in full strength sea water (28) was evaluated. Exposure of oysters to a salinity of 14 decreased the active mantle transepithelial ion transport and specifically affected Ca2+ transfer. Gene expression of the Na+/K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase was decreased whereas the expression of the T-type voltage-gated Ca channel and the Na+/Ca2+-exchanger increased compared to animals maintained in full SW. The results indicate that decreased environmental salinities will most likely affect not only osmoregulation but also bivalve biomineralization and shell formation.Funding Agency European Union (EU) 605051 Swedish Mariculture Research Center, SWEMARC, University of Gothenburg Herbert & Karin Jacobssons Stiftelse 15/h17 Helge Ax:son Johnsons Stiftelse F18-0128 Portuguese Foundation for Science and Technology UID/Multi/04326/2019 Portuguese Foundation for Science and Technology UID/Multi/04326/2019 FCT, under the "Norma Transitoria" DL57/2016/CP1361/CT0020 DL57/2016/CP1361/CT0011info:eu-repo/semantics/publishedVersio

    Impacts of the combined exposure to seawater acidification and arsenic on the proteome of Crassostrea angulata and Crassostrea gigas

    Get PDF
    Proteomic analysis was performed to compare the effects of Arsenic (As), seawater acidification (Low pH) and the combination of both stressors (Low pH + As) on Crassostrea angulata and Crassostrea gigas juveniles in the context of global environmental change. This study aimed to elucidate if two closely related Crassostrea species respond similarly to these environmental stressors, considering both single and combined exposures, to infer if the simultaneous exposure to both stressors induced a differentiated response. Identification of the most important differentially expressed proteins between conditions revealed marked differences in the response of each species towards single and combined exposures, evidencing species-related differences towards each experimental condition. Moreover, protein alterations observed in the combined exposure (Low pH + As) were substantially different from those observed in single exposures. Identified proteins and their putative biological functions revealed an array of modes of action in each condition. Among the most important, those involved in cellular structure (Actin, Atlastin, Severin, Gelsolin, Coronin) and extracellular matrix modulation (Ependymin, Tight junction ZO-1, Neprilysin) were strongly regulated, although in different exposure conditions and species. Data also revealed differences regarding metabolic modulation capacity (ATP β, Enolase, Aconitate hydratase) and oxidative stress response (Aldehyde dehydrogenase, Lactoylglutathione, Retinal dehydrogenase) of each species, which also depended on single or combined exposures, illustrating a different response capacity of both oyster species to the presence of multiple stressors. Interestingly, alterations of piRNA abundance in C. angulata suggested genome reconfiguration in response to multiple stressors, likely an important mode of action related to adaptive evolution mechanisms previously unknown to oyster species, which requires further investigation. The present findings provide a deeper insight into the complexity of C. angulata and C. gigas responses to environmental stress at the proteome level, evidencing different capacities to endure abiotic changes, with relevance regarding the ecophysiological fitness of each species and competitive advantages in a changing environment.Centro-01-0145-FEDER-000018info:eu-repo/semantics/publishedVersio

    Comparative Microbial Dynamics in Crassostrea virginica and Crassostrea ariakensis

    Get PDF
    Considerations to introduce the Suminoe or Asian oyster Crassostrea ariakensis along the East Coast have raised many questions regarding ecology, economics, and human health. To date, research has focused primarily on the ecological and socioeconomic implications of this initiative, yet few studies have assessed its potential impact on public health. Our work compares the rates of bioaccumulation, depuration and post harvest decay of indicator organisms (such as E. coli) and Vibrio sp. between Crassostrea virginica and Crassostrea ariakensis in the laboratory. Preliminary results suggest that the rates of bioaccumulation of E. coli in Crassostrea ariakensis were significantly lower than those for Crassostrea virginica, depuration of E. coli was variable between the two species, and Crassostrea ariakensis post harvest decay rates of Vibrio sp. were significantly lower than Crassostrea virginica. This research provides coastal managers with insight into the response of Crassostrea ariakensis to bacteria, an important consideration for determining appropriate management strategies for this species. Further field-based studies will be necessary to elucidate the mechanisms responsible for the differences in rates of bioaccumulation and depuration. (PDF contains 40 pages

    Mussel watch worldwide literature survey - 1991 /

    Get PDF

    Development and distribution of the non-indigenous Pacific oyster (Crassostrea gigas) in the Dutch Wadden Sea

    Get PDF
    Pacific oysters (Crassostrea gigas) were first observed in the Dutch Wadden Sea near Texel in 1983. The population increased slowly in the beginning but grew exponentially from the mid-1990s onwards, although now some stabilisation seems to be occurring. They occur on a variety of substrates such as mussel beds (Mytilus edulis), shell banks, dikes and poles. After initial settlement spat may fall on older individuals and congregate to dense clumps and subsequently form reefs. Individual Pacific oysters grow 3–4 cm long in their first year and 2–3 cm in their second year. Many mussel beds (Mytilus edulis) are slowly taken over by Pacific oysters, but there are also several reports of mussel spat settling on Pacific oyster reefs. This might in the end result in combined reefs. Successful Pacific oyster spat fall seems to be related to high summer temperatures, but also after mild summers much spat can be found on old (Pacific oyster) shells. Predation is of limited importance. Mortality factors are unknown, but every now and then unexplained mass mortality occurs. The gradual spread of the Pacific oyster in the Dutch Wadden Sea is documented in the first instance based on historical and anecdotal information. At the start of the more in-depth investigation in 2002, Pacific oysters of all size classes were already present near Texel. Near Ameland the development could be followed from the first observed settlement. On dense reefs each square metre may contain more than 500 adult Pacific oysters, weighing more than 100 kg per m² fresh weigh

    The distribution and ecological effects of the introduced Pacific oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia

    Get PDF
    In this work we studied the actual coverage, distribution patterns and ecologic effects of the introduced oyster Crassostrea gigas 20 y after their introduction to the Northern Argentinean Patagonia (Bahia Anegada; 39º50´S to 40º40´S and 61º59 to 62º28 W). Using satellite imagery and field and aerial inspections we found 10 oyster beds that cover less than 0.05% of the bay intertidal (area covered: 36.45 ha). These beds are restricted to intertidal zones with superficial hard substrata (limestone outcrops). Most epifaunal organisms (the crabs Cyrtagrapsus angulatus, Chasmagnathus granulatus, the isopod Melita palmata. and the snail Heleobia australis) showed higher densities inside oyster beds compared with outside and experiments showed that artificially deployed oyster beds increased the densities of their at three intertidal zones (high intertidal marsh, low intertidal marsh. and low intertidal with hard substrata) and also increased densities of infaunal organisms (the polychaetes Laeonereis acuta, Nepthys fluviatilis, and the priapulid Priapulus tuberculatospinosus) at the low intertidal with hard substrata. This may be the result of increasing habitat structure and refuge for epifaunal organisms, and enhancement of deposition and sediment stability that may benefit infaunal organisms. Densities bird species (Local species: Larus dominicanus, Haematopus palliatits: Regional migratory shorebird: Charadrius falklandicus; Long range migratory shorebirds: Pluvialis dominica, Calidris canutus, Tringa flavipes) were higher inside oyster beds compared with similar zones without oysters, which may be the result of higher prey availability. Foraging rate was also higher for some of these species (P. dominica, C. falklandicus). However, due to the limited availability of hard substratum the distribution of oysters is small. In conclusion, no negative effects were observed as a result of this introduction. There was an increase in species abundance and the area was preferred by local and migratory bird species, which also showed higher feeding rates.Fil: Escapa, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Isacch, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Iribarne, Oscar Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Borges, Mónica Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Dos Santos, Eder Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Gagliardini, Domingo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lasta, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Subsede Instituto Nacional de Investigación y Desarrollo Pesquero; Argentin

    The biology and culture of tropical oysters

    Get PDF
    Reviews the biology and ecology of oysters, and experimental and culture techniques used in the tropics; describes problems in tropical oyster farming and identifies research needs to further develop this form of aquaculture. Three oyster genera are discussed: Ostrea, Crassostrea and Saccostrea. The advantages and disadvantages of various species of each genus with regard to aquaculture are also described.Oyster culture, Tropics, Biology
    • …
    corecore