81 research outputs found

    Recursive joint CramĂ©r‐Rao lower bound for parametric systems with two‐adjacent‐states dependent measurements

    Get PDF
    Joint Cramér-Rao lower bound (JCRLB) is very useful for the performance evaluation of joint state and parameter estimation (JSPE) of non-linear systems, in which the current measurement only depends on the current state. However, in reality, the non-linear systems with two-adjacent-states dependent (TASD) measurements, that is, the current measurement is dependent on the current state as well as the most recent previous state, are also common. First, the recursive JCRLB for the general form of such non-linear systems with unknown deterministic parameters is developed. Its relationships with the posterior CRLB for systems with TASD measurements and the hybrid CRLB for regular parametric systems are also provided. Then, the recursive JCRLBs for two special forms of parametric systems with TASD measurements, in which the measurement noises are autocorrelated or cross-correlated with the process noises at one time step apart, are presented, respectively. Illustrative examples in radar target tracking show the effectiveness of the JCRLB for the performance evaluation of parametric TASD systems

    Exact Feature Extraction Using Finite Rate of Innovation Principles With an Application to Image Super-Resolution

    Get PDF
    The accurate registration of multiview images is of central importance in many advanced image processing applications. Image super-resolution, for example, is a typical application where the quality of the super-resolved image is degrading as registration errors increase. Popular registration methods are often based on features extracted from the acquired images. The accuracy of the registration is in this case directly related to the number of extracted features and to the precision at which the features are located: images are best registered when many features are found with a good precision. However, in low-resolution images, only a few features can be extracted and often with a poor precision. By taking a sampling perspective, we propose in this paper new methods for extracting features in low-resolution images in order to develop efficient registration techniques. We consider, in particular, the sampling theory of signals with finite rate of innovation and show that some features of interest for registration can be retrieved perfectly in this framework, thus allowing an exact registration. We also demonstrate through simulations that the sampling model which enables the use of finite rate of innovation principles is well suited for modeling the acquisition of images by a camera. Simulations of image registration and image super-resolution of artificially sampled images are first presented, analyzed and compared to traditional techniques. We finally present favorable experimental results of super-resolution of real images acquired by a digital camera available on the market

    THEORETICAL ASPECTS AND REAL ISSUES IN AN INTEGRATED MULTIRADAR SYSTEM

    Get PDF
    In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a unique approach to solve the problem [1]. Information Technology (IT) can provide an important support to HS in preventing, detecting and early warning of threats. Even though the link between IT and HS is relatively recent, sensor integration and collaboration is a widely applied technique aimed to aggregate data from multiple sources, to yield timely information on potential threats and to improve the accuracy in monitoring events [2]. A large number of sensors have already been developed to support surveillance operations. Parallel to this technological effort in developing new powerful and dedicated sensors, interest in integrating a set of stand-alone sensors into an integrated multi-sensor system has been increasing. In fact, rather than to develop new sensors to achieve more accurate tracking and surveillance systems, it is more useful to integrate existing stand-alone sensors into a single system in order to obtain performance improvements In this dissertation, a notional integrated multi-sensor system acting in a maritime border control scenario for HS is considered. In general, a border surveillance system is composed of multiple land based and moving platforms carrying different types of sensors [1]. In a typical scenario, described in [1], the integrated system is composed of a land based platform, located on the coast, and an airborne platform moving in front of the coast line. In this dissertation, we handle two different fundamental aspects. In Part I, we focus on a single sensor in the system, i.e. the airborne radar. We analyze the tracking performance of such a kind of sensor in the presence of two different atmospheric problems: the turbulence (in Chapter 1) and the tropospheric refraction (in Chapter 2). In particular, in Chapter 1, the losses in tracking accuracy of a turbulence-ignorant tracking filter (i.e. a filter that does not take into account the effects of the atmospheric turbulences) acting in a turbulent scenario, is quantified. In Chapter 2, we focus our attention on the tropospheric propagation effects on the radar electromagnetic (em) signals and their correction for airborne radar tracking. It is well known that the troposphere is characterized by a refractive index that varies with the altitude and with the local weather. This variability of the refractive index causes an error in the radar measurements. First, a mathematical model to describe and calculate the em radar signal ray path in the troposphere is discussed. Using this mathematical model, the errors due to the tropospheric propagation are evaluated and the corrupted radar measurements are then numerically generated. Second, a tracking algorithm, based on the Kalman Filter, that is able to mitigate the tropospheric errors during the tracking procedure, is proposed. In Part II, we consider the integrated system in its wholeness to investigate a fundamental prerequisite of any data fusion process: the sensor registration process. The problem of sensor registration (also termed, for naval system, the grid-locking problem) arises when a set of data coming from two or more sensors must be combined. This problem involves a coordinate transformation and the reciprocal alignment among the various sensors: streams of data from different sensors must be converted into a common coordinate system (or frame) and aligned before they could be used in a tracking or surveillance system. If not corrected, registration errors can seriously degrade the global system performance by increasing tracking errors and even introducing ghost tracks. A first basic distinction is usually made between relative grid-locking and absolute grid-locking. The relative grid-locking process aligns remote data to local data under the assumption that the local data are bias free and that all biases reside with the remote sensor. The problem is that, actually, also the local sensor is affected by bias. Chapter 3 of this dissertation is dedicated to the solution of the relative grid-locking problem. Two different estimation algorithms are proposed: a linear Least Squares (LS) algorithm and an Expectation-Maximization-based (EM) algorithm. The linear LS algorithm is a simple and fast algorithm, but numerical results have shown that the LS estimator is not efficient for most of the registration bias errors. Such non-efficiency could be caused by the linearization implied by the linear LS algorithm. Then, in order to obtain a more efficient estimation algorithm, an Expectation-Maximization algorithm is derived. In Chapter 4 we generalize our findings to the absolute grid-locking problem. Part III of this dissertation is devoted to a more theoretical aspect of fundamental importance in a lot of practical applications: the estimate of the disturbance covariance matrix. Due to its relevance, in literature it can be found a huge quantity of works on this topic. Recently, a new geometrical concept has been applied to this estimation problem: the Riemann (or intrinsic) geometry. In Chapter 5, we give an overview on the state of the art of the application of the Riemann geometry for the covariance matrix estimation in radar problems. Particular attention is given for the detection problem in additive clutter. Some covariance matrix estimators and a new decision rule based on the Riemann geometry are analyzed and their performance are compared with the classical ones. [1] Sofia Giompapa, “Analysis, modeling, and simulation of an integrated multi-sensor system for maritime border control”, PhD dissertation, University of Pisa, April 2008. [2] H. Chen, F. Y. Wang, and D. Zeng, “Intelligence and security informatics for Homeland Security: information, communication and transportation,” Intelligent Transportation Systems, IEEE Transactions on, vol. 5, no. 4, pp. 329-341, December 2004

    Statistical modelling of algorithms for signal processing in systems based on environment perception

    Get PDF
    One cornerstone for realising automated driving systems is an appropriate handling of uncertainties in the environment perception and situation interpretation. Uncertainties arise due to noisy sensor measurements or the unknown future evolution of a traffic situation. This work contributes to the understanding of these uncertainties by modelling and propagating them with parametric probability distributions

    Target Tracking in Wireless Sensor Networks

    Get PDF

    Precision of pose estimation using corner detection.

    Get PDF
    The aim of this research was to develop a method for recording ground truth with performance comparable to motion capture, in order to produce high-quality outdoor visual odometry datasets. A novel fiducial marker system was developed, featuring a smooth pattern which is used in an optimisation process to produce refined estimates. On average, precision was increased by 27 % compared to traditional fiducial markers. To investigate the limit of the increase in pose estimation precision possible with this method, the marker was modelled as a dense grid of checkerboard corners and the Cramér-Rao lower bound of the corresponding estimator was derived symbolically. This gave a lower bound for the variance of a pose estimated from a given image. The model was validated in simulation and using real images. The distribution of the error for a common checkerboard corner detector was evaluated to determine whether modelling it using independent and identically distributed Gaussian random variables was valid. In a series of experiments where images were collected from a tripod, a robot arm, and a slider-type electric actuator, it was determined that the error is usually normally distributed but its variance depends on the amount of lens blur in the image, and that any amount of motion blur can produce correlated results. Furthermore, in images with little blur (less than approximately one pixel) the estimates are biased, and both the bias and the variance are dependent on the location of the corner within a pixel. In real images, the standard deviation of the noise was around 80 % larger at the pixel edges than at the centre. The intensity noise from the image sensor was also found not to be identically distributed: in one camera, the standard deviation of the intensity noise varied by a factor of approximately four within the region around a checkerboard corner. This research suggests that it is possible to significantly increase fiducial marker pose estimation precision, presents a novel approach for predicting and evaluating pose estimation precision, and highlights sources of error not considered in prior work

    A lateral nanoflow assay reveals nanoplastic fluorescence heterogeneity

    Full text link
    Colloidal nanoplastics present technological opportunities, environmental concerns, and measurement challenges. To meet these challenges, we develop a lateral nanoflow assay from sample-in to answer-out. Our measurement system integrates complex nanofluidic replicas, super-resolution optical microscopy, and comprehensive statistical analyses to measure polystyrene nanoparticles that sorb and carry hydrophobic fluorophores. An elegant scaling of surface forces within our silicone devices hydrodynamically automates the advection and dominates the diffusion of the nanoparticles. Through steric interaction with the replica structure, the particle size distribution reciprocally probes the unknown limits of replica function. Multiple innovations in the integration and calibration of device and microscope improve the accuracy of identifying single nanoparticles and quantifying their diameters and fluorescence intensities. A statistical model of the measurement approaches the information limit of the system, discriminates size exclusion from surface adsorption, and reduces nonideal data to return the particle size distribution with nanometer resolution. A Bayesian statistical analysis of the dimensional and optical properties of single nanoparticles reveals their fundamental structure-property relationship. Fluorescence intensity shows a super-volumetric dependence, scaling with nanoparticle diameter to nearly the fourth power and confounding basic concepts of chemical sorption. Distributions of fluorescivity - the product of the number density, absorption cross section, and quantum yield of an ensemble of fluorophores - are ultrabroad and asymmetric, limiting ensemble analysis and dimensional or chemical inference from fluorescence intensity. These results reset expectations for optimizing nanoplastic products, understanding nanoplastic byproducts, and applying nanoplastic standards

    Noise-Enhanced and Human Visual System-Driven Image Processing: Algorithms and Performance Limits

    Get PDF
    This dissertation investigates the problem of image processing based on stochastic resonance (SR) noise and human visual system (HVS) properties, where several novel frameworks and algorithms for object detection in images, image enhancement and image segmentation as well as the method to estimate the performance limit of image segmentation algorithms are developed. Object detection in images is a fundamental problem whose goal is to make a decision if the object of interest is present or absent in a given image. We develop a framework and algorithm to enhance the detection performance of suboptimal detectors using SR noise, where we add a suitable dose of noise into the original image data and obtain the performance improvement. Micro-calcification detection is employed in this dissertation as an illustrative example. The comparative experiments with a large number of images verify the efficiency of the presented approach. Image enhancement plays an important role and is widely used in various vision tasks. We develop two image enhancement approaches. One is based on SR noise, HVS-driven image quality evaluation metrics and the constrained multi-objective optimization (MOO) technique, which aims at refining the existing suboptimal image enhancement methods. Another is based on the selective enhancement framework, under which we develop several image enhancement algorithms. The two approaches are applied to many low quality images, and they outperform many existing enhancement algorithms. Image segmentation is critical to image analysis. We present two segmentation algorithms driven by HVS properties, where we incorporate the human visual perception factors into the segmentation procedure and encode the prior expectation on the segmentation results into the objective functions through Markov random fields (MRF). Our experimental results show that the presented algorithms achieve higher segmentation accuracy than many representative segmentation and clustering algorithms available in the literature. Performance limit, or performance bound, is very useful to evaluate different image segmentation algorithms and to analyze the segmentability of the given image content. We formulate image segmentation as a parameter estimation problem and derive a lower bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels considered in our work, using a modified Cramér-Rao bound (CRB). The derivation is based on the biased estimator assumption, whose reasonability is verified in this dissertation. Experimental results demonstrate the validity of the derived bound

    Collaborative Estimation in Distributed Sensor Networks

    Get PDF
    Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user\u27s sight, the engineering of these devices involves fierce tradeoffs between energy availability (battery sizes impact portability) and signal processing / communication capability (which impacts the smartness of the devices). The goal of this dissertation is to provide a fundamental understanding and characterization of these tradeoffs in the context of a sensor network, where the goal is to estimate a common signal by coordinating a multitude of battery-powered sensor nodes. Most of the research so far has been based on two key assumptions -- distributed processing and temporal independence -- that lend analytical tractability to the problem but otherwise are often found lacking in practice. This dissertation introduces novel techniques to relax these assumptions -- leading to vastly efficient energy usage in typical networks (up to 20% savings) and new insights on the quality of inference. For example, the phenomenon of sensor drift is ubiquitous in applications such as air-quality monitoring, oceanography and bridge monitoring, where calibration is often difficult and costly. This dissertation provides an analytical framework linking the state of calibration to the overall uncertainty of the inferred parameters. In distributed estimation, sensor nodes locally process their observed data and send the resulting messages to a sink, which combines the received messages to produce a final estimate of the unknown parameter. In this dissertation, this problem is generalized and called collaborative estimation , where some sensors can potentially have access to the observations from neighboring sensors and use that information to enhance the quality of their messages sent to the sink, while using the same (or lower) energy resources. This is motivated by the fact that inter-sensor communication may be possible if sensors are geographically close. As demonstrated in this dissertation, collaborative estimation is particularly effective in energy-skewed and information-skewed networks, where some nodes may have larger batteries than others and similarly some nodes may be more informative (less noisy) compared to others. Since the node with the largest battery is not necessarily also the most informative, the proposed inter-sensor collaboration provides a natural framework to route the relevant information from low-energy-high-quality nodes to high-energy-low-quality nodes in a manner that enhances the overall power-distortion tradeoff. This dissertation also analyzes how time-correlated measurement noise affects the uncertainties of inferred parameters. Imperfections such as baseline drift in sensors result in a time-correlated additive component in the measurement noise. Though some models of drift have been reported in the literature earlier, none of the studies have considered the effect of drifting sensors on an estimation application. In this dissertation, approximate measures of estimation accuracy (Cramer-Rao bounds) are derived as a function of physical properties of sensors -- namely the drift strength, correlation (Markov) factor and the time-elapsed since last calibration. For stationary drift (Markov factor less than one), it is demonstrated that the first order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. When the drift is non-stationary (Markov factor equal to one), it is established that the constant part of a signal can only be estimated inconsistently (with non-zero asymptotic variance). The results help quantify the notions that measurements taken sooner after calibration result in more accurate inference

    Neural correlates of visual perceptual learning and inhibitory neurotransmitter in humans using magnetic resonance spectroscopy

    Get PDF
    The role of excitatory processes in human visual learning has been well characterised through the use of technologies such as functional magnetic resonance imaging (fMRI). However, established imaging modalities do not distinguish excitatory processes from the inhibitory ones that are also involved. Here we investigate inhibitory processes using magnetic resonance spectroscopy (MRS) and the MEGA-PRESS pulse sequence. We measure concentrations of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in different brain regions as functional markers of inhibitory potential. We then investigate the correlations between GABA concentrations and psychophysical learning metrics. We detail a full analysis pipeline that improves the accuracy of in vivo GABA quantification and introduce new scaling methods to resolve the grey matter contribution to metabolite measurements. We develop visual learning experiments that are mediated by training difficulty, which we link to inhibitory processes across different time scales. We also present novel evidence for GABAergic inhibitory mechanisms across multiple brain areas using fine and coarse discrimination tasks. Our results support a cooperative top-down and bottom-up model of visual learning in occipital and frontal cortical regions. Our findings reveal chemical interactions with cognition to contribute to our understanding of inhibitory processes in the human learning brain
    • 

    corecore