18 research outputs found

    Interpolation and the Exchange Rule

    Full text link
    It was proved by Maksimova in 1977 that exactly eight varieties of Heyting algebras have the amalgamation property, and hence exactly eight axiomatic extensions of intuitionistic propositional logic have the deductive interpolation property. The prevalence of the deductive interpolation property for axiomatic extensions of substructural logics and the amalgamation property for varieties of pointed residuated lattices, their equivalent algebraic semantics, is far less well understood, however. Taking as our starting point a formulation of intuitionistic propositional logic as the full Lambek calculus with exchange, weakening, and contraction, we investigate the role of the exchange rule--algebraically, the commutativity law--in determining the scope of these properties. First, we show that there are continuum-many varieties of idempotent semilinear residuated lattices that have the amalgamation property and contain non-commutative members, and hence continuum-many axiomatic extensions of the corresponding logic that have the deductive interpolation property in which exchange is not derivable. We then show that, in contrast, exactly sixty varieties of commutative idempotent semilinear residuated lattices have the amalgamation property, and hence exactly sixty axiomatic extensions of the corresponding logic with exchange have the deductive interpolation property. From this latter result, it follows also that there are exactly sixty varieties of commutative idempotent semilinear residuated lattices whose first-order theories have a model completion

    Uniform interpolation and coherence

    Get PDF
    A variety V is said to be coherent if any finitely generated subalgebra of a finitely presented member of V is finitely presented. It is shown here that V is coherent if and only if it satisfies a restricted form of uniform deductive interpolation: that is, any compact congruence on a finitely generated free algebra of V restricted to a free algebra over a subset of the generators is again compact. A general criterion is obtained for establishing failures of coherence, and hence also of uniform deductive interpolation. This criterion is then used in conjunction with properties of canonical extensions to prove that coherence and uniform deductive interpolation fail for certain varieties of Boolean algebras with operators (in particular, algebras of modal logic K and its standard non-transitive extensions), double-Heyting algebras, residuated lattices, and lattices

    One-variable fragments of first-order logics

    Full text link
    The one-variable fragment of a first-order logic may be viewed as an "S5-like" modal logic, where the universal and existential quantifiers are replaced by box and diamond modalities, respectively. Axiomatizations of these modal logics have been obtained for special cases -- notably, the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic -- but a general approach, extending beyond first-order intermediate logics, has been lacking. To this end, a sufficient criterion is given in this paper for the one-variable fragment of a semantically-defined first-order logic -- spanning families of intermediate, substructural, many-valued, and modal logics -- to admit a natural axiomatization. More precisely, such an axiomatization is obtained for the one-variable fragment of any first-order logic based on a variety of algebraic structures with a lattice reduct that has the superamalgamation property, building on a generalized version of a functional representation theorem for monadic Heyting algebras due to Bezhanishvili and Harding. An alternative proof-theoretic strategy for obtaining such axiomatization results is also developed for first-order substructural logics that have a cut-free sequent calculus and admit a certain interpolation property.Comment: arXiv admin note: text overlap with arXiv:2209.0856

    Universal Proof Theory: Semi-analytic Rules and Craig Interpolation

    Full text link
    In [6], Iemhoff introduced the notion of a focused axiom and a focused rule as the building blocks for a certain form of sequent calculus which she calls a focused proof system. She then showed how the existence of a terminating focused system implies the uniform interpolation property for the logic that the calculus captures. In this paper we first generalize her focused rules to semi-analytic rules, a dramatically powerful generalization, and then we will show how the semi-analytic calculi consisting of these rules together with our generalization of her focused axioms, lead to the feasible Craig interpolation property. Using this relationship, we first present a uniform method to prove interpolation for different logics from sub-structural logics FLe\mathbf{FL_e}, FLec\mathbf{FL_{ec}}, FLew\mathbf{FL_{ew}} and IPC\mathbf{IPC} to their appropriate classical and modal extensions, including the intuitionistic and classical linear logics. Then we will use our theorem negatively, first to show that so many sub-structural logics including \L_n, GnG_n, BLBL, RR and RMeRM^e and almost all super-intutionistic logics (except at most seven of them) do not have a semi-analytic calculus. To investigate the case that the logic actually has the Craig interpolation property, we will first define a certain specific type of semi-analytic calculus which we call PPF systems and we will then present a sound and complete PPF calculus for classical logic. However, we will show that all such PPF calculi are exponentially slower than the classical Hilbert-style proof system (or equivalently LK+Cut\mathbf{LK+Cut}). We will then present a similar exponential lower bound for a certain form of complete PPF calculi, this time for any super-intuitionistic logic.Comment: 45 page

    Theorems of Alternatives for Substructural Logics

    Full text link
    A theorem of alternatives provides a reduction of validity in a substructural logic to validity in its multiplicative fragment. Notable examples include a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in the R-mingle logic RM to the validity of a linear combination of these formulas, and Gordan's theorem for solutions of linear systems over the real numbers, that yields an analogous reduction for validity in Abelian logic A. In this paper, general conditions are provided for axiomatic extensions of involutive uninorm logic without additive constants to admit a theorem of alternatives. It is also shown that a theorem of alternatives for a logic can be used to establish (uniform) deductive interpolation and completeness with respect to a class of dense totally ordered residuated lattices

    Algebraic semantics for one-variable lattice-valued logics

    Full text link
    The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property

    Idempotent residuated structures : some category equivalences and their applications

    Get PDF
    This paper concerns residuated lattice-ordered idempotent commutative monoids that are subdirect products of chains. An algebra of this kind is a generalized Sugihara monoid (GSM) if it is generated by the lower bounds of the monoid identity; it is a Sugihara monoid if it has a compatible involution :. Our main theorem establishes a category equivalence between GSMs and relative Stone algebras with a nucleus (i.e., a closure operator preserving the lattice operations). An analogous result is obtained for Sugihara monoids. Among other applications, it is shown that Sugihara monoids are strongly amalgamable, and that the relevance logic RMt has the projective Beth de nability property for deduction.http://www.ams.org//journals/tran/hb201

    Structure Theorems for Idempotent Residuated Lattices

    Get PDF
    In this paper we study structural properties of residuated lattices that are idempotent as monoids. We provide descriptions of the totally ordered members of this class and obtain counting theorems for the number of finite algebras in various subclasses. We also establish the finite embeddability property for certain varieties generated by classes of residuated lattices that are conservative in the sense that monoid multiplication always yields one of its arguments. We then make use of a more symmetric version of Raftery’s characterization theorem for totally ordered commutative idempotent residuated lattices to prove that the variety generated by this class has the amalgamation property. Finally, we address an open problem in the literature by giving an example of a noncommutative variety of idempotent residuated lattices that has the amalgamation property
    corecore