49 research outputs found

    OPTIMAL LOCATION AND SIZING OF MULTIPLE DISTRIBUTED GENERATORS IN RADIAL DISTRIBUTION NETWORK USING METAHEURISTIC OPTIMIZATION ALGORITHMS

    Get PDF
    . The satisfaction of electricity customers and environmental constraints imposed have made the trend towards renewable energies more essential given its advantages such as reducing power losses and enhancing voltage profiles. This study addresses the optimal sizing and setting of Photovoltaic Distributed Generator (PVDG) connected to Radial Distribution Network (RDN) using various novel optimization algorithms. These algorithms are implemented to minimize the Multi-Objective Function (MOF), which devoted to optimize the Total Active Power Loss (TAPL), the Total Voltage Deviation (TVD), and the overcurrent protection relays (OCRs)’s Total Operation Time (TOT). The effectiveness of the proposed algorithms is validated on the test system standard IEEE 33-bus RDN. In this paper is presented a recent meta-heuristic optimization algorithm of the Slime Mould Algorithm (SMA), where the results reveal its effectiveness and robustness among all the applied optimization algorithms, in identifying the optimal allocation (locate and size) of the PVDG units into RDN for mitigating the power losses, enhance the RDN system's voltage profiles and improve the overcurrent protection system. Accordingly, the SMA approach can be a very favorable algorithm to cope with the optimal PVDG allocation problem

    OPTIMAL POWER MANAGEMENT OF DGS AND DSTATCOM USING IMPROVED ALI BABA AND THE FORTY THIEVES OPTIMIZER

    Get PDF
    In this study an improved Ali Baba and the forty thieves Optimizer (IAFT) is proposed and successfully adapted and applied to enhance the technical performances of radial distribution network (RDN). The standard AFT governed by two sensible parameters to balance the exploration and the exploitation stages. In the proposed variant a modification is introduced using sine and cosine functions to create flexible balance between Intensification and diversification during search process. The proposed variant namely IAFT applied to solve various single and combined objective functions such as the improvement of total power losses (TPL), the minimization of total voltage deviation and the maximization of the loading capacity (LC) under fixed load and considering the random aspect of loads. The exchange of active powers is elaborated by integration of multi distribution generation based photovoltaic systems (PV), otherwise the optimal management of reactive power is achieved by the installation of multi DSTATCOM. The efficiency and robustness of the proposed variant validated on two RDN, the 33-Bus and the 69-Bus. The qualities of objective functions achieved and the statistical analysis elaborated compared to results achieved using several recent metaheuristic methods demonstrate the competitive aspect of the proposed IAFT in solving with accuracy various practical problems related to optimal power management of RDN

    Revisión de la optimización de Bess en sistemas de potencia

    Get PDF
    The increasing penetration of Distributed Energy Resources has imposed several challenges in the analysis and operation of power systems, mainly due to the uncertainties in primary resource. In the last decade, implementation of Battery Energy Storage Systems in electric networks has caught the interest in research since the results have shown multiple positive effects when deployed optimally. In this paper, a review in the optimization of battery storage systems in power systems is presented. Firstly, an overview of the context in which battery storage systems are implemented, their operation framework, chemistries and a first glance of optimization is shown. Then, formulations and optimization frameworks are detailed for optimization problems found in recent literature. Next, A review of the optimization techniques implemented or proposed, and a basic explanation of the more recurrent ones is presented. Finally, the results of the review are discussed. It is concluded that optimization problems involving battery storage systems are a trending topic for research, in which a vast quantity of more complex formulations have been proposed for Steady State and Transient Analysis, due to the inclusion of stochasticity, multi-periodicity and multi-objective frameworks. It was found that the use of Metaheuristics is dominant in the analysis of complex, multivariate and multi-objective problems while relaxations, simplifications, linearization, and single objective adaptations have enabled the use of traditional, more efficient, and exact techniques. Hybridization in metaheuristics has been important topic of research that has shown better results in terms of efficiency and solution quality.La creciente penetración de recursos distribuidos ha impuesto desafíos en el análisis y operación de sistemas de potencia, principalmente debido a incertidumbres en los recursos primarios. En la última década, la implementación de sistemas de almacenamiento por baterías en redes eléctricas ha captado el interés en la investigación, ya que los resultados han demostrado efectos positivos cuando se despliegan óptimamente. En este trabajo se presenta una revisión de la optimización de sistemas de almacenamiento por baterías en sistemas de potencia. Pare ello se procedió, primero, a mostrar el contexto en el cual se implementan los sistemas de baterías, su marco de operación, las tecnologías y las bases de optimización. Luego, fueron detallados la formulación y el marco de optimización de algunos de los problemas de optimización encontrados en literatura reciente. Posteriormente se presentó una revisión de las técnicas de optimización implementadas o propuestas recientemente y una explicación básica de las técnicas más recurrentes. Finalmente, se discutieron los resultados de la revisión. Se obtuvo como resultados que los problemas de optimización con sistemas de almacenamiento por baterías son un tema de tendencia para la investigación, en el que se han propuesto diversas formulaciones para el análisis en estado estacionario y transitorio, en problemas multiperiodo que incluyen la estocasticidad y formulaciones multiobjetivo. Adicionalmente, se encontró que el uso de técnicas metaheurísticas es dominante en el análisis de problemas complejos, multivariados y multiobjetivo, mientras que la implementación de relajaciones, simplificaciones, linealizaciones y la adaptación mono-objetivo ha permitido el uso de técnicas más eficientes y exactas. La hibridación de técnicas metaheurísticas ha sido un tema relevante para la investigación que ha mostrado mejorías en los resultados en términos de eficiencia y calidad de las soluciones

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Advanced Operation and Maintenance in Solar Plants, Wind Farms and Microgrids

    Get PDF
    This reprint presents advances in operation and maintenance in solar plants, wind farms and microgrids. This compendium of scientific articles will help clarify the current advances in this subject, so it is expected that it will please the reader

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    AI Applications to Power Systems

    Get PDF
    Today, the flow of electricity is bidirectional, and not all electricity is centrally produced in large power plants. With the growing emergence of prosumers and microgrids, the amount of electricity produced by sources other than large, traditional power plants is ever-increasing. These alternative sources include photovoltaic (PV), wind turbine (WT), geothermal, and biomass renewable generation plants. Some renewable energy resources (solar PV and wind turbine generation) are highly dependent on natural processes and parameters (wind speed, wind direction, temperature, solar irradiation, humidity, etc.). Thus, the outputs are so stochastic in nature. New data-science-inspired real-time solutions are needed in order to co-develop digital twins of large intermittent renewable plants whose services can be globally delivered

    Carbon-Dioxide Pipeline Infrastructure Route Optimization And Network Modeling For Carbon Capture Storage And Utilization

    Get PDF
    Carbon capture, utilization, and storage (CCUS) is a technology value-chain which can help reduce CO2 emissions while ensuring sustainable development of the energy and industrial sectors. However, CCUS requires large-scale deployment of infrastructure for capturing feasible amounts of CO2 that can be capital intensive for stakeholders. In addition, CCUS deployment leads to the development of extensive pipeline corridors, which can be inconsistent with the requirements for future CCUS infrastructure expansion. With the implementation and growth of CCUS technology in the states of North Dakota, Montana, Wyoming, Colorado and Utah in mind, this dissertation has two major goals: (a) to identify feasible corridors for CO2 pipelines; and (b) to develop a CCUS infrastructure network which minimizes project cost. To address these goals, the dissertation introduces the CCSHawk methodology that develops pipeline routes and CCUS infrastructure networks using a variety of techniques such as multi-criteria decision analysis (MCDA), graph network algorithms, natural language processing and linear network optimization. The pipeline route and CCUS network model are designed using open-source data, specifically: geo-information, emission quantities and reservoir properties. The MCDA of the study area reveals that North Dakota, central Wyoming and Eastern Colorado have the highest amount of land suitable for CO2 pipeline corridors. The optimized graph network routing algorithm reduces the overall length of pipeline routes by an average of 4.23% as compared to traditional routing algorithms while maintaining low environmental impact. The linear optimization of the CCUS infrastructure shows that the cost for implementing the technology in the study area can vary between 24.05/tCO2to24.05/tCO2 to 42/tCO2 for capturing 20 to 90MtCO2. The analysis also reveals that there would be a declining economic impact of existing pipeline infrastructure on the future growth of CCUS networks ranging between 0.01 to 1.62$/tCO2 with increasing CO2 capture targets. This research is significant, as it establishes a technique for pipeline route modeling and CCUS economic analysis highly adaptable to various geographic regions. To the best of the author\u27s knowledge, it is also the first economic analysis that considers the effect of pre-existing infrastructure on the growth of CCUS technology for the region. Furthermore, the pipeline route model establishes a schema for considering not only environmental factors but also ecological factors for the study area
    corecore