1,913 research outputs found

    A computer vision model for visual-object-based attention and eye movements

    Get PDF
    This is the post-print version of the final paper published in Computer Vision and Image Understanding. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.This paper presents a new computational framework for modelling visual-object-based attention and attention-driven eye movements within an integrated system in a biologically inspired approach. Attention operates at multiple levels of visual selection by space, feature, object and group depending on the nature of targets and visual tasks. Attentional shifts and gaze shifts are constructed upon their common process circuits and control mechanisms but also separated from their different function roles, working together to fulfil flexible visual selection tasks in complicated visual environments. The framework integrates the important aspects of human visual attention and eye movements resulting in sophisticated performance in complicated natural scenes. The proposed approach aims at exploring a useful visual selection system for computer vision, especially for usage in cluttered natural visual environments.National Natural Science of Founda- tion of Chin

    A Computational Model of Spatial Memory Anticipation during Visual Search

    Get PDF
    Some visual search tasks require to memorize the location of stimuli that have been previously scanned. Considerations about the eye movements raise the question of how we are able to maintain a coherent memory, despite the frequent drastically changes in the perception. In this article, we present a computational model that is able to anticipate the consequences of the eye movements on the visual perception in order to update a spatial memor

    Probabilistic modeling of eye movement data during conjunction search via feature-based attention

    Get PDF
    Where the eyes fixate during search is not random; rather, gaze reflects the combination of information about the target and the visual input. It is not clear, however, what information about a target is used to bias the underlying neuronal responses. We here engage subjects in a variety of simple conjunction search tasks while tracking their eye movements. We derive a generative model that reproduces these eye movements and calculate the conditional probabilities that observers fixate, given the target, on or near an item in the display sharing a specific feature with the target. We use these probabilities to infer which features were biased by top-down attention: Color seems to be the dominant stimulus dimension for guiding search, followed by object size, and lastly orientation. We use the number of fixations it took to find the target as a measure of task difficulty. We find that only a model that biases multiple feature dimensions in a hierarchical manner can account for the data. Contrary to common assumptions, memory plays almost no role in search performance. Our model can be fit to average data of multiple subjects or to individual subjects. Small variations of a few key parameters account well for the intersubject differences. The model is compatible with neurophysiological findings of V4 and frontal eye fields (FEF) neurons and predicts the gain modulation of these cells

    A Focus on Selection for Fixation

    Get PDF
    A computational explanation of how visual attention, interpretation of visual stimuli, and eye movements combine to produce visual behavior, seems elusive. Here, we focus on one component: how selection is accomplished for the next fixation. The popularity of saliency map models drives the inference that this is solved, but we argue otherwise. We provide arguments that a cluster of complementary, conspicuity representations drive selection, modulated by task goals and history, leading to a hybrid process that encompasses early and late attentional selection. This design is also constrained by the architectural characteristics of the visual processing pathways. These elements combine into a new strategy for computing fixation targets and a first simulation of its performance is presented. A sample video of this performance can be found by clicking on the "Supplementary Files" link under the "Article Tools" heading

    Objects predict fixations better than early saliency

    Get PDF
    Humans move their eyes while looking at scenes and pictures. Eye movements correlate with shifts in attention and are thought to be a consequence of optimal resource allocation for high-level tasks such as visual recognition. Models of attention, such as “saliency maps,” are often built on the assumption that “early” features (color, contrast, orientation, motion, and so forth) drive attention directly. We explore an alternative hypothesis: Observers attend to “interesting” objects. To test this hypothesis, we measure the eye position of human observers while they inspect photographs of common natural scenes. Our observers perform different tasks: artistic evaluation, analysis of content, and search. Immediately after each presentation, our observers are asked to name objects they saw. Weighted with recall frequency, these objects predict fixations in individual images better than early saliency, irrespective of task. Also, saliency combined with object positions predicts which objects are frequently named. This suggests that early saliency has only an indirect effect on attention, acting through recognized objects. Consequently, rather than treating attention as mere preprocessing step for object recognition, models of both need to be integrated
    corecore