6,638 research outputs found

    A note about complexity of lens spaces

    Get PDF
    Within crystallization theory, (Matveev's) complexity of a 3-manifold can be estimated by means of the combinatorial notion of GM-complexity. In this paper, we prove that the GM-complexity of any lens space L(p,q), with p greater than 2, is bounded by S(p,q)-3, where S(p,q) denotes the sum of all partial quotients in the expansion of q/p as a regular continued fraction. The above upper bound had been already established with regard to complexity; its sharpness was conjectured by Matveev himself and has been recently proved for some infinite families of lens spaces by Jaco, Rubinstein and Tillmann. As a consequence, infinite classes of 3-manifolds turn out to exist, where complexity and GM-complexity coincide. Moreover, we present and briefly analyze results arising from crystallization catalogues up to order 32, which prompt us to conjecture, for any lens space L(p,q) with p greater than 2, the following relation: k(L(p,q)) = 5 + 2 c(L(p,q)), where c(M) denotes the complexity of a 3-manifold M and k(M)+1 is half the minimum order of a crystallization of M.Comment: 14 pages, 2 figures; v2: we improved the paper (changes in Proposition 10; Corollary 9 and Proposition 11 added) taking into account Theorem 2.6 of arxiv:1310.1991v1 which makes use of our Prop. 6(b) (arxiv:1309.5728v1). Minor changes have been done, too, in particular to make references more essentia
    • …
    corecore