472 research outputs found

    A semi-exact degree condition for Hamilton cycles in digraphs

    Full text link
    The paper is concerned with directed versions of Posa's theorem and Chvatal's theorem on Hamilton cycles in graphs. We show that for each a>0, every digraph G of sufficiently large order n whose outdegree and indegree sequences d_1^+ \leq ... \leq d_n^+ and d_1^- \leq >... \leq d_n^- satisfy d_i^+, d_i^- \geq min{i + a n, n/2} is Hamiltonian. In fact, we can weaken these assumptions to (i) d_i^+ \geq min{i + a n, n/2} or d^-_{n - i - a n} \geq n-i; (ii) d_i^- \geq min{i + a n, n/2} or d^+_{n - i - a n} \geq n-i; and still deduce that G is Hamiltonian. This provides an approximate version of a conjecture of Nash-Williams from 1975 and improves a previous result of K\"uhn, Osthus and Treglown

    Structure and enumeration of (3+1)-free posets

    Full text link
    A poset is (3+1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3+1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a finer decomposition into bipartite graphs which applies to all (3+1)-free posets and obtain generating functions which count (3+1)-free posets with labelled or unlabelled vertices. Using this decomposition, we obtain a decomposition of the automorphism group and asymptotics for the number of (3+1)-free posets.Comment: 28 pages, 5 figures. New version includes substantial changes to clarify the construction of skeleta and the enumeration. An extended abstract of this paper appears as arXiv:1212.535
    • …
    corecore