12,421 research outputs found

    The Impact of Shape on the Perception of Euler Diagrams

    Get PDF
    Euler diagrams are often used for visualizing data collected into sets. However, there is a significant lack of guidance regarding graphical choices for Euler diagram layout. To address this deficiency, this paper asks the question `does the shape of a closed curve affect a user's comprehension of an Euler diagram?' By empirical study, we establish that curve shape does indeed impact on understandability. Our analysis of performance data indicates that circles perform best, followed by squares, with ellipses and rectangles jointly performing worst. We conclude that, where possible, circles should be used to draw effective Euler diagrams. Further, the ability to discriminate curves from zones and the symmetry of the curve shapes is argued to be important. We utilize perceptual theory to explain these results. As a consequence of this research, improved diagram layout decisions can be made for Euler diagrams whether they are manually or automatically drawn

    A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane

    Get PDF
    In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional (2D) space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are determined, and a set of points is generated on the elliptic arcs connecting every two neighbouring intersection points. By finding the tangent lines to the ellipses at the extended set of points, a set of half-planes is obtained, whose intersection forms a polygon. To find the polygon more efficiently, the points are given an order and the intersection of the half-planes corresponding to every two neighbouring points is calculated. If the polygon is convex and bounded, these calculated points together with the initially obtained intersection points will form its vertices. If the polygon is non-convex or unbounded, we can detect this situation and then generate additional discrete points only on the elliptical arc segment causing the issue, and restart the algorithm to obtain a bounded and convex polygon. Finally, the smallest area ellipse that contains the vertices of the polygon is obtained by solving a convex optimization problem. Through numerical experiments, it is illustrated that the proposed technique returns a tighter outer-approximation of the intersection of multiple ellipses, compared to conventional techniques, with only slightly higher computational cost

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2 coverage area

    Get PDF
    Porous alumina masks are fabricated by anodization of aluminum films grown on both semiconducting and insulating substrates. For these self-assembled alumina masks, pore diameters and periodicities within the ranges of 10–130 and 20–200nm, respectively, can be controlled by varying anodization conditions. 20nm periodicities correspond to pore densities in excess of 1012 per square inch, close to the holy grail of media with 1Tbit∕in.2 density. With these alumina masks, ordered sub-100-nm planar ferromagnetic nanodot arrays covering over 1cm2 were fabricated by electron beam evaporation and subsequent mask lift-off. Moreover, exchange-biased bilayer nanodots were fabricated using argon-ion milling. The average dot diameter and periodicity are tuned between 25 and 130nm and between 45 and 200nm, respectively. Quantitative analyses of scanning electron microscopy (SEM) images of pore and dot arrays show a high degree of hexagonal ordering and narrow size distributions. The dot periodicity obtained from grazi..

    Systematic Bias in Cosmic Shear: Beyond the Fisher Matrix

    Full text link
    We describe a method for computing the biases that systematic signals introduce in parameter estimation using a simple extension of the Fisher matrix formalism. This allows us to calculate the offset of the best fit parameters relative to the fiducial model, in addition to the usual statistical error ellipse. As an application, we study the impact that residual systematics in tomographic weak lensing measurements. In particular we explore three different types of shape measurement systematics: (i) additive systematic with no redshift evolution; (ii) additive systematic with redshift evolution; and (iii) multiplicative systematic. In each case, we consider a wide range of scale dependence and redshift evolution of the systematics signal. For a future DUNE-like full sky survey, we find that, for cases with mild redshift evolution, the variance of the additive systematic signal should be kept below 10^-7 to ensure biases on cosmological parameters that are sub-dominant to the statistical errors. For the multiplicative systematics, which depends on the lensing signal, we find the multiplicative calibration m0 needs to be controlled to an accuracy better than 10^-3. We find that the impact of systematics can be underestimated if their assumes redshift dependence is too simplistic. We provide simple scaling relations to extend these requirements to any survey geometry and discuss the impact of our results for current and future weak lensing surveys.Comment: Submitted to MNRAS. 11 pages, including 11 figures and 4 table

    Part-to-whole Registration of Histology and MRI using Shape Elements

    Get PDF
    Image registration between histology and magnetic resonance imaging (MRI) is a challenging task due to differences in structural content and contrast. Too thick and wide specimens cannot be processed all at once and must be cut into smaller pieces. This dramatically increases the complexity of the problem, since each piece should be individually and manually pre-aligned. To the best of our knowledge, no automatic method can reliably locate such piece of tissue within its respective whole in the MRI slice, and align it without any prior information. We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology. The approach relies on the representation of images using their level lines so as to reach contrast invariance. Shape elements obtained via the extraction of bitangents are encoded in a projective-invariant manner, which permits the identification of common pieces of curves between two images. We evaluated the approach on human brain histology and compared resulting alignments against manually annotated ground truths. Considering the complexity of the brain folding patterns, preliminary results are promising and suggest the use of characteristic and meaningful shape elements for improved robustness and efficiency.Comment: Paper accepted at ICCV Workshop (Bio-Image Computing
    • …
    corecore