55,598 research outputs found

    Covering numbers for support vector machines

    Full text link

    Fast rates for support vector machines using Gaussian kernels

    Full text link
    For binary classification we establish learning rates up to the order of n−1n^{-1} for support vector machines (SVMs) with hinge loss and Gaussian RBF kernels. These rates are in terms of two assumptions on the considered distributions: Tsybakov's noise assumption to establish a small estimation error, and a new geometric noise condition which is used to bound the approximation error. Unlike previously proposed concepts for bounding the approximation error, the geometric noise assumption does not employ any smoothness assumption.Comment: Published at http://dx.doi.org/10.1214/009053606000001226 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scale-sensitive Psi-dimensions: the Capacity Measures for Classifiers Taking Values in R^Q

    Get PDF
    Bounds on the risk play a crucial role in statistical learning theory. They usually involve as capacity measure of the model studied the VC dimension or one of its extensions. In classification, such "VC dimensions" exist for models taking values in {0, 1}, {1,..., Q} and R. We introduce the generalizations appropriate for the missing case, the one of models with values in R^Q. This provides us with a new guaranteed risk for M-SVMs which appears superior to the existing one

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page

    When Does a Mixture of Products Contain a Product of Mixtures?

    Full text link
    We derive relations between theoretical properties of restricted Boltzmann machines (RBMs), popular machine learning models which form the building blocks of deep learning models, and several natural notions from discrete mathematics and convex geometry. We give implications and equivalences relating RBM-representable probability distributions, perfectly reconstructible inputs, Hamming modes, zonotopes and zonosets, point configurations in hyperplane arrangements, linear threshold codes, and multi-covering numbers of hypercubes. As a motivating application, we prove results on the relative representational power of mixtures of product distributions and products of mixtures of pairs of product distributions (RBMs) that formally justify widely held intuitions about distributed representations. In particular, we show that a mixture of products requiring an exponentially larger number of parameters is needed to represent the probability distributions which can be obtained as products of mixtures.Comment: 32 pages, 6 figures, 2 table
    • …
    corecore