5,258 research outputs found

    Subsampling in Smoothed Range Spaces

    Full text link
    We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point) can be contained in a range with a non-binary value in [0,1][0,1]. Similar notions have been considered for kernels; we extend them to more general types of ranges. We then consider approximations of these range spaces through ε\varepsilon -nets and ε\varepsilon -samples (aka ε\varepsilon-approximations). We characterize when size bounds for ε\varepsilon -samples on kernels can be extended to these more general smoothed range spaces. We also describe new generalizations for ε\varepsilon -nets to these range spaces and show when results from binary range spaces can carry over to these smoothed ones.Comment: This is the full version of the paper which appeared in ALT 2015. 16 pages, 3 figures. In Algorithmic Learning Theory, pp. 224-238. Springer International Publishing, 201

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    Periodic Planar Disk Packings

    Full text link
    Several conditions are given when a packing of equal disks in a torus is locally maximally dense, where the torus is defined as the quotient of the plane by a two-dimensional lattice. Conjectures are presented that claim that the density of any strictly jammed packings, whose graph does not consist of all triangles and the torus lattice is the standard triangular lattice, is at most nn+1π12\frac{n}{n+1}\frac{\pi}{\sqrt{12}}, where nn is the number of packing disks. Several classes of collectively jammed packings are presented where the conjecture holds.Comment: 26 pages, 13 figure

    Finite-sample Analysis of M-estimators using Self-concordance

    Get PDF
    We demonstrate how self-concordance of the loss can be exploited to obtain asymptotically optimal rates for M-estimators in finite-sample regimes. We consider two classes of losses: (i) canonically self-concordant losses in the sense of Nesterov and Nemirovski (1994), i.e., with the third derivative bounded with the 3/23/2 power of the second; (ii) pseudo self-concordant losses, for which the power is removed, as introduced by Bach (2010). These classes contain some losses arising in generalized linear models, including logistic regression; in addition, the second class includes some common pseudo-Huber losses. Our results consist in establishing the critical sample size sufficient to reach the asymptotically optimal excess risk for both classes of losses. Denoting dd the parameter dimension, and deffd_{\text{eff}} the effective dimension which takes into account possible model misspecification, we find the critical sample size to be O(deffd)O(d_{\text{eff}} \cdot d) for canonically self-concordant losses, and O(ρdeffd)O(\rho \cdot d_{\text{eff}} \cdot d) for pseudo self-concordant losses, where ρ\rho is the problem-dependent local curvature parameter. In contrast to the existing results, we only impose local assumptions on the data distribution, assuming that the calibrated design, i.e., the design scaled with the square root of the second derivative of the loss, is subgaussian at the best predictor θ\theta_*. Moreover, we obtain the improved bounds on the critical sample size, scaling near-linearly in max(deff,d)\max(d_{\text{eff}},d), under the extra assumption that the calibrated design is subgaussian in the Dikin ellipsoid of θ\theta_*. Motivated by these findings, we construct canonically self-concordant analogues of the Huber and logistic losses with improved statistical properties. Finally, we extend some of these results to 1\ell_1-regularized M-estimators in high dimensions

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    Experimental Realization of an Extreme-Parameter Omnidirectional Cloak

    Get PDF
    An ideal transformation-based omnidirectional cloak always relies on metamaterials with extreme parameters, which were previously thought to be too difficult to realize. For such a reason, in previous experimental proposals of invisibility cloaks, the extreme parameters requirements are usually abandoned, leading to inherent scattering. Here, we report on the first experimental demonstration of an omnidirectional cloak that satisfies the extreme parameters requirement, which can hide objects in a homogenous background. Instead of using resonant metamaterials that usually involve unavoidable absorptive loss, the extreme parameters are achieved using a nonresonant metamaterial comprising arrays of subwavelength metallic channels manufactured with 3D metal printing technology. A high level transmission of electromagnetic wave propagating through the present omnidirectional cloak, as well as significant reduction of scattering field, is demonstrated both numerically and experimentally. Our work may also inspire experimental realizations of the other full-parameter omnidirectional optical devices such as concentrator, rotators, and optical illusion apparatuses
    corecore