38 research outputs found

    Matching random colored points with rectangles

    Get PDF
    Let S Âż [0, 1]2 be a set of n points, randomly and uniformly selected. Let R Âż B be a random partition, or coloring, of S in which each point of S is included in R uniformly at random with probability 1/2. We study the random number M(n) of points of S that are covered by the rectangles of a maximum strong matching of S with axis-aligned rectangles. The matching consists of closed rectangles that cover exactly two points of S of the same color. A matching is strong if all its rectangles are pairwise disjoint. We prove that almost surely M(n) = 0.83 n for n large enough. Our approach is based on modeling a deterministic greedy matching algorithm, that runs over the random point set, as a Markov chain.Postprint (published version

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k−12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k−1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Covering many points with a small-area box

    Get PDF
    Let PP be a set of nn points in the plane. We show how to find, for a given integer k>0k>0, the smallest-area axis-parallel rectangle that covers kk points of PP in O(nk2log⁥n+nlog⁥2n)O(nk^2 \log n+ n\log^2 n) time. We also consider the problem of, given a value α>0\alpha>0, covering as many points of PP as possible with an axis-parallel rectangle of area at most α\alpha. For this problem we give a probabilistic (1−Δ)(1-\varepsilon)-approximation that works in near-linear time: In O((n/Δ4)log⁥3nlog⁥(1/Δ))O((n/\varepsilon^4)\log^3 n \log (1/\varepsilon)) time we find an axis-parallel rectangle of area at most α\alpha that, with high probability, covers at least (1−Δ)Îș∗(1-\varepsilon)\mathrm{\kappa^*} points, where Îș∗\mathrm{\kappa^*} is the maximum possible number of points that could be covered

    Geometric Planar Networks on Bichromatic Points

    Get PDF
    We study four classical graph problems – Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic ( Open image in new window and Open image in new window ) points. These problems have been widely studied for points in the Euclidean plane, and many of them are NP -hard. In this work, we consider these problems in two restricted settings: (i) collinear points and (ii) equidistant points on a circle. We show that almost all of these problems can be solved in linear time in these constrained, yet non-trivial settings.acceptedVersio

    Blocking the k-Holes of Point Sets in the Plane

    Get PDF
    Let P be a set of n points in the plane in general position. A subset H of P consisting of k elements that are the vertices of a convex polygon is called a k-hole of P, if there is no element of P in the interior of its convex hull. A set B of points in the plane blocks the k-holes of P if any k-hole of P contains at least one element of B in the interior of its convex hull. In this paper we establish upper and lower bounds on the sizes of k-hole blocking sets, with emphasis in the case k=5

    New Variations of the Maximum Coverage Facility Location Problem

    Get PDF
    Consider a competitive facility location scenario where, given a set U of n users and a set F of m facilities in the plane, the objective is to place a new facility in an appropriate place such that the number of users served by the new facility is maximized. Here users and facilities are considered as points in the plane, and each user takes service from its nearest facility, where the distance between a pair of points is measured in either L1 or L2 or L∞ metric. This problem is also known as the maximum coverage (MaxCov) problem. In this paper, we will consider the k-MaxCov problem, where the objective is to place k (â©Ÿ1) new facilities such that the total number of users served by these k new facilities is maximized. We begin by proposing an O(nlogn) time algorithm for the k-MaxCov problem, when the existing facilities are all located on a single straight line and the new facilities are also restricted to lie on the same line. We then study the 2-MaxCov problem in the plane, and propose an O(n2) time and space algorithm in the L1 and L∞ metrics. In the L2 metric, we solve the 2-MaxCov problem in the plane in O(n3logn) time and O(n2logn) space. Finally, we consider the 2-Farthest-MaxCov problem, where a user is served by its farthest facility, and propose an algorithm that runs in O(nlogn) time, in all the three metrics
    corecore