7,119 research outputs found

    An investigation of entorhinal spatial representations in self-localisation behaviours

    Get PDF
    Spatial-modulated cells of the medial entorhinal cortex (MEC) and neighbouring cortices are thought to provide the neural substrate for self-localisation behaviours. These cells include grid cells of the MEC which are thought to compute path integration operations to update self-location estimates. In order to read this grid code, downstream cells are thought to reconstruct a positional estimate as a simple rate-coded representation of space. Here, I show the coding scheme of grid cell and putative readout cells recorded from mice performing a virtual reality (VR) linear location task which engaged mice in both beaconing and path integration behaviours. I found grid cells can encode two unique coding schemes on the linear track, namely a position code which reflects periodic grid fields anchored to salient features of the track and a distance code which reflects periodic grid fields without this anchoring. Grid cells were found to switch between these coding schemes within sessions. When grid cells were encoding position, mice performed better at trials that required path integration but not on trials that required beaconing. This result provides the first mechanistic evidence linking grid cell activity to path integration-dependent behaviour. Putative readout cells were found in the form of ramp cells which fire proportionally as a function of location in defined regions of the linear track. This ramping activity was found to be primarily explained by track position rather than other kinematic variables like speed and acceleration. These representations were found to be maintained across both trial types and outcomes indicating they likely result from recall of the track structure. Together, these results support the functional importance of grid and ramp cells for self-localisation behaviours. Future investigations will look into the coherence between these two neural populations, which may together form a complete neural system for coding and decoding self-location in the brain

    How Transitive Are Real-World Group Interactions? -- Measurement and Reproduction

    Full text link
    Many real-world interactions (e.g., researcher collaborations and email communication) occur among multiple entities. These group interactions are naturally modeled as hypergraphs. In graphs, transitivity is helpful to understand the connections between node pairs sharing a neighbor, and it has extensive applications in various domains. Hypergraphs, an extension of graphs, are designed to represent group relations. However, to the best of our knowledge, there has been no examination regarding the transitivity of real-world group interactions. In this work, we investigate the transitivity of group interactions in real-world hypergraphs. We first suggest intuitive axioms as necessary characteristics of hypergraph transitivity measures. Then, we propose a principled hypergraph transitivity measure HyperTrans, which satisfies all the proposed axioms, with a fast computation algorithm Fast-HyperTrans. After that, we analyze the transitivity patterns in real-world hypergraphs distinguished from those in random hypergraphs. Lastly, we propose a scalable hypergraph generator THera. It reproduces the observed transitivity patterns by leveraging community structures, which are pervasive in real-world hypergraphs. Our code and datasets are available at https://github.com/kswoo97/hypertrans.Comment: To be published in KDD 2023. 12 pages, 7 figures, and 11 table

    optimización da planificación de adquisición de datos LIDAR cara ó modelado 3D de interiores

    Get PDF
    The main objective of this doctoral thesis is the design, validation and implementation of methodologies that allow the geometric and topological modelling of navigable spaces, whether inside buildings or urban environments, to be integrated into three-dimensional geographic information systems (GIS-3D). The input data of this work will consist mainly of point clouds (which can be classified) acquired by LiDAR systems both indoors and outdoors. In addition, the use of BIM infrastructure models and cadastral maps is proposed depending on their availability. Point clouds provide a large amount of environmental information with high accuracy compared to data offered by other acquisition technologies. However, the lack of data structure and volume requires a great deal of processing effort. For this reason, the first step is to structure the data by dividing the input cloud into simpler entities that facilitate subsequent processes. For this first division, the physical elements present in the cloud will be considered, since they can be walls in the case of interior environments or kerbs in the case of exteriors. In order to generate navigation routes adapted to different mobile agents, the next objective will try to establish a semantic subdivision of space according to the functionalities of space. In the case of internal environments, it is possible to use BIM models to evaluate the results and the use of cadastral maps that support the division of the urban environment. Once the navigable space is divided, the design of topologically coherent navigation networks will be parameterized both geometrically and topologically. For this purpose, several spatial discretization techniques, such as 3D tessellations, will be studied to facilitate the establishment of topological relationships, adjacency, connectivity and inclusion between subspaces. Based on the geometric characterization and the topological relations established in the previous phase, the creation of three-dimensional navigation networks with multimodal support will be addressed and different levels of detail will be considered according to the mobility specifications of each agent and its purpose. Finally, the possibility of integrating the networks generated in a GIS-3D visualization system will be considered. For the correct visualization, the level of detail can be adjusted according to geometry and semantics. Aspects such as the type of user or transport, mobility, rights of access to spaces, etc. They must be considered at all times.El objetivo principal de esta tesis doctoral es el diseño, la validación y la implementación de metodologías que permitan el modelado geométrico y topológico de espacios navegables, ya sea de interiores de edificios o entornos urbanos, para integrarse en sistemas de información geográfica tridimensional (SIG). -3D). Los datos de partida de este trabajo consistirán principalmente en nubes de puntos (que pueden estar clasificados) adquiridas por sistemas LiDAR tanto en interiores como en exteriores. Además, se propone el uso de modelos BIM de infraestructuras y mapas catastrales en función de su disponibilidad. Las nubes de puntos proporcionan una gran cantidad de información del entorno con gran precisión con respecto a los datos ofrecidos por otras tecnologías de adquisición. Sin embargo, la falta de estructura de datos y su volumen requiere un gran esfuerzo de procesamiento. Por este motivo, el primer paso que se debe realizar consiste en estructurar los datos dividiendo la nube de entrada en entidades más simples que facilitan los procesos posteriores. Para esta primera división se considerarán los elementos físicos presentes en la nube, ya que pueden ser paredes en el caso de entornos interiores o bordillos en el caso de los exteriores. Con el propósito de generar rutas de navegación adaptadas a diferentes agentes móviles, el próximo objetivo intentará establecer una subdivisión semántica del espacio de acuerdo con las funcionalidades del espacio. En el caso de entornos internos, es posible utilizar modelos BIM para evaluar los resultados y el uso de mapas catastrales que sirven de apoyo en la división del entorno urbano. Una vez que se divide el espacio navegable, se parametrizará tanto geométrica como topológicamente al diseño de redes de navegación topológicamente coherentes. Para este propósito, se estudiarán varias técnicas de discretización espacial, como las teselaciones 3D, para facilitar el establecimiento de relaciones topológicas, la adyacencia, la conectividad y la inclusión entre subespacios. A partir de la caracterización geométrica y las relaciones topológicas establecidas en la fase anterior, se abordará la creación de redes de navegación tridimensionales con soporte multimodal y se considerarán diversos niveles de detalle según las especificaciones de movilidad de cada agente y su propósito. Finalmente, se contemplará la posibilidad de integrar las redes generadas en un sistema de visualización tridimensional 3D SIG 3D. Para la correcta visualización, el nivel de detalle se puede ajustar en función de la geometría y la semántica. Aspectos como el tipo de usuario o transporte, movilidad, derechos de acceso a espacios, etc. Deben ser considerados en todo momento.O obxectivo principal desta tese doutoral é o deseño, validación e implementación de metodoloxías que permitan o modelado xeométrico e topolóxico de espazos navegables, ben sexa de interiores de edificios ou de entornos urbanos, ca fin de seren integrados en Sistemas de Información Xeográfica tridimensionais (SIX-3D). Os datos de partida deste traballo constarán principalmente de nubes de puntos (que poden estar clasificadas) adquiridas por sistemas LiDAR tanto en interiores como en exteriores. Ademáis plantease o uso de modelos BIM de infraestruturas e mapas catastrais dependendo da súa dispoñibilidade. As nubes de puntos proporcionan unha gran cantidade de información do entorno cunha gran precisión respecto os datos que ofrecen outras tecnoloxías de adquisición. Sen embargo, a falta de estrutura dos datos e a seu volume esixe un amplo esforzo de procesado. Por este motivo o primeiro paso a levar a cabo consiste nunha estruturación dos datos mediante a división da nube de entrada en entidades máis sinxelas que faciliten os procesos posteriores. Para esta primeira división consideraranse elementos físicos presentes na nube como poden ser paredes no caso de entornos interiores ou bordillos no caso de exteriores. Coa finalidade de xerar rutas de navegación adaptadas a distintos axentes móbiles, o seguinte obxectivo tratará de establecer unha subdivisión semántica do espazo de acordo as funcionalidades do espazo. No caso de entornos interiores plantease a posibilidade de empregar modelos BIM para avaliar os resultados e o uso de mapas catastrais que sirvan de apoio na división do entorno urbano. Unha vez divido o espazo navigable parametrizarase tanto xeométricamente como topolóxicamene de cara ao deseño de redes de navegación topolóxicamente coherentes. Para este fin estudaranse varias técnicas de discretización de espazos como como son as teselacións 3D co obxectivo de facilitar establecer relacións topolóxicas, de adxacencia, conectividade e inclusión entre subespazos. A partir da caracterización xeométrica e das relación topolóxicas establecidas na fase previa abordarase a creación de redes de navegación tridimensionais con soporte multi-modal e considerando varios niveis de detalle de acordo as especificacións de mobilidade de cada axente e a súa finalidade. Finalmente comtemplarase a posibilidade de integrar as redes xeradas nun sistema SIX 3D visualización tridimensional. Para a correcta visualización o nivel de detalle poderá axustarse en base a xeometría e a semántica. Aspectos como o tipo de usuario ou transporte, mobilidade, dereitos de acceso a espazos, etc. deberán ser considerados en todo momento

    Representing Edge Flows on Graphs via Sparse Cell Complexes

    Full text link
    Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the cell inference optimization problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms current state-of-the-art methods while being computationally efficient.Comment: 9 pages, 6 figures (plus appendix). For evaluation code, see https://anonymous.4open.science/r/edge-flow-repr-cell-complexes-11C

    Constant-Hop Spanners for More Geometric Intersection Graphs, with Even Smaller Size

    Get PDF

    Design and Construction of a Longitudinally Polarized Solid Nuclear Target for CLAS12

    Get PDF
    A new polarized nuclear target has been developed, constructed, and deployed at Jefferson Laboratory in Newport News, VA for use with the upgraded 12 GeV CEBAF (Continuous Electron Beam Accelerator Facility) accelerator and the Hall B CLAS12 (12 GeV CEBAF Large Acceptance Spectrometer) detector array. This ‘APOLLO’ (Ammonia POLarized LOngitudinally) target is a longitudinally polarized, solid ammonia, nuclear target which employs DNP (Dynamic Nuclear Polarization) to induce a net polarization in samples of protons (NH3) and deuterons (ND3) cooled to 1K via helium evaporation, held in a 5T polarizing field supplied by the CLAS12 spectrometer, and irradiated with 140 GHz microwave radiation. It was utilized in the RGC (Run Group C) experiment suite through a collaboration of the JLab Target Group, Old Dominion University, Christopher Newport University, the University of Virginia, and the CLAS Collaboration. RGC comprised six experiments which measured multiple spin-dependent observables across a wide kinematic phase space for use in nucleon spin studies. The dimensional constraints necessary for the incorporation of APOLLO into CLAS12, as well as the considerations necessary to utilize the CLAS12 solenoid, introduced unique challenges to the target design. This document presents the innovative solutions developed for these challenges including a novel material transport system, superconducting magnetic correction coils, and an all new bespoke NMR (Nuclear Magnetic Resonance) system. In addition to a detailed description of the complete target system and an initial report of the RGC experimental run, it will also present a study of Quark-Hadron Duality in the g1 spin structure function based on Hall B EG1b data and pQCD fits from the JAM (Jefferson Lab Angular Momentum) Collaboration

    Data Tiling for Sparse Computation

    Get PDF
    Many real-world data contain internal relationships. Efficient analysis of these relationship data is crucial for important problems including genome alignment, network vulnerability analysis, ranking web pages, among others. Such relationship data is frequently sparse and analysis on it is called sparse computation. We demonstrate that the important technique of data tiling is more powerful than previously known by broadening its application space. We focus on three important sparse computation areas: graph analysis, linear algebra, and bioinformatics. We demonstrate data tiling's power by addressing key issues and providing significant improvements---to both runtime and solution quality---in each area. For graph analysis, we focus on fast data tiling techniques that can produce well-structured tiles and demonstrate theoretical hardness results. These tiles are suitable for graph problems as they reduce data movement and ultimately improve end-to-end runtime performance. For linear algebra, we introduce a new cache-aware tiling technique and apply it to the key kernel of sparse matrix by sparse matrix multiplication. This technique tiles the second input matrix and then uses a small, summary matrix to guide access to the tiles during computation. Our approach results in the fastest known implementation across three distinct CPU architectures. In bioinformatics, we develop a tiling based de novo genome assembly pipeline. We start with reads and develop either a graph or hypergraph that captures internal relationships between reads. This is then tiled to minimize connections while maintaining balance. We then treat each resulting tile independently as the input to an existing, shared-memory assembler. Our pipeline improves existing state-of-the-art de novo genome assemblers and brings both runtime and quality improvements to them on both real-world and simulated datasets.Ph.D

    Electrical and Optical Modeling of Thin-Film Photovoltaic Modules

    Get PDF
    Heutzutage ist durch viele wissenschaftliche Studien nachgewiesen, dass die Erde längst dem Klimawandel unterworfen ist. Daher muss die gesamte Menschheit vereint handeln, um die schlimmsten Katastrophenszenarien zu verhindern. Ein vielversprechender Ansatz - wenn nicht sogar der vielversprechendste überhaupt - um diese angesprochene, größte Herausforderung in der Geschichte der Menschheit zu bewältigen, ist es, den Energiehunger der Menschheit durch die Erzeugung erneuerbarer und unerschöpflicher Energie zu sättigen. Die Photovoltaik (PV)-Technologie ist ein vielversprechender Anwärter, die leistungsstärkste erneuerbare Energiequelle zu stellen, und spielt aufgrund ihrer direkten Umwandlung des Sonnenlichtes und ihrer skalierbaren Anwendbarkeit in Form von großflächigen Solarmodulen bereits jetzt eine große Rolle bei der Erzeugung erneuerbarer Energie. Im PV-Sektor sind Solarmodule aus Siliziumwafern die derzeit vorherrschende Technologie. Neu aufkommende PV-Technologien wie die Dünnschichttechnologie haben jedoch vorteilhafte Eigenschaften wie einen sehr geringen Kohlenstoffdioxid (CO2)-Fußabdruck, eine kurze energetische Amortisierungszeit und das Potenzial für eine kostengünstige monolithische Massenproduktion, obwohl diese derzeit noch nicht final ausgereift ist. Um die Dünnschichttechnologie jedoch gezielt in Richtung einer breiten Marktreife zu entwickeln, sind numerische Simulationen eine wichtige Säule für das wissenschaftliche Verständnis und die technologische Optimierung. Während sich traditionelle Simulationsliteratur häufig mit materialspezifischen Herausforderungen befasst, konzentriert sich diese Arbeit auf industrieorientierte Herausforderungen auf Modulebene, ohne die zugrundeliegenden Materialparameter zu verändern. Um ein allumfassendes, digitales Modell eines Solarmoduls zu erstellen, werden in dieser Arbeit mehrere Simulationsansätze aus verschiedenen physikalischen Bereichen kombiniert. Zur Abbildung elektrischer Effekte, einschließlich der räumlichen Spannungsvariation innerhalb des Moduls, wird eine Finite Elemente Methode (FEM) zur Lösung der räumlich quantisierten Poisson-Gleichung verwendet. Um optische Effekte zu berücksichtigen, wird eine generalisierte Transfermatrix-Methode (TMM) verwendet. Alle Simulationsmethoden sind in dieser Arbeit von Grund auf neu programmiert worden, um eine Verknüpfung aller Simulationsebenen mit dem höchstmöglichen Grad an Anpassung und Verknüpfung zu ermöglichen. Die Simulation und die Korrektheit der Parameter wird durch externe Quanteneffizienz (EQE)-Messungen, experimentelle Reflexionsdaten und gemessene Strom-Spannungs (I-U)-Kennlinien verifiziert. Der Kernpunkt der Vorgehensweise dieser Arbeit ist eine ganzheitliche Simulationsmethodik auf Modulebene. Dies ermöglicht es, die Lücke zwischen der Simulation auf Materialebene über die Berechnung von Laborwirkungsgraden bis hin zur Bestimmung der von zahlreichen Umweltfaktoren beeinflusste Leistung der Module im Freifeld zu überbrücken. Durch diese Verknüpfung von Zellsimulation und Systemdesign ist es lediglich aus Laboreigenschaften möglich, das Freifeldverhalten von Solarmodulen zu prognostizieren. Sogar das Zurückrechnen von experimentellen Messungen zu Materialparameter ist mittels des in dieser Arbeit entwickelten Verfahrens des Reverse Engineering Fittings (REF) möglich. Das in dieser Arbeit entwickelte numerische Verfahren kann für mehrere Anwendungen genutzt werden. Zunächst können durch die Kombination von elektrischen und optischen Simulationen ganzheitliche Top-Down-Verlustanalysen durchgeführt werden. Dies ermöglicht eine wissenschaftliche Einordnung und einen quantitativen Vergleich aller Verlustleistungsmechanismen auf einen Blick, was die zukünftige Forschung und Entwicklung in Richtung von technologischen Schwachstellen von Solarmodulen lenkt. Darüber hinaus ermöglicht die Kombination von Elektrik und Optik die Detektion von Verlusten, die auf dem nichtlinearen Zusammenspiel dieser beiden Ebenen beruhen und auf eine räumliche Spannungsverteilung im Solarmodul zurückzuführen sind. Diese Arbeit verwendet die entwickelten numerischen Modelle ebenfalls für Optimierungsprobleme, die an digitalen Modellen realer Solarmodule durchgeführt werden. Häufig auftretende Fragestellungen bei der Entwicklung von Solarmodulen sind beispielsweise die Schichtdicke des vorderen optisch transparenten, elektrisch leitfähigen Oxids (TCO) oder die Breite von monolithisch verschalteten Zellen. Die Bestimmung des Optimums dieser mehrdimensionalen Abwägungen zwischen optischer Transparenz, elektrischer Leitfähigkeit und geometrisch inaktiver Fläche zwischen den einzelnen Zellen ist ein Hauptmerkmal der Methodik dieser Arbeit. Mittels des FEM-Ansatzes dieser Arbeit ist es möglich, alle gegenseitigen Wechselwirkungen über verschiedene physikalische Ebenen hinweg zu berücksichtigen und ein ganzheitlich optimiertes Moduldesign zu finden. Auch topologisch komplexere Probleme, wie das Finden eines geeigneten Designs für das Metallisierungsgitter, können auf Grundlage der Simulation mittels der Methode der Topologie-Optimierung (TO) gelöst werden. In dieser Arbeit wurde das TO-Verfahren zum ersten Mal für monolithisch integrierte Zellen eingesetzt. Darüber hinaus wurde gezeigt, dass sowohl einfache Optimierungen der TCO-Schichtdicken als auch Topologie-Optimierungen stark von den vorherrschenden Beleuchtungsverhältnissen abhängen. Daher ist eine Optimierung auf den Jahresertrag anstelle des Laborwirkungsgrades für industrienahe Anwendungen wesentlich sinnvoller, da die mittleren Jahreseinstrahlungen deutlich von den Laborbedingungen abweichen. Mit Hilfe dieser Ertragsoptimierung wurde in dieser Arbeit für die Kupfer-Indium-Gallium-Diselenid CuIn1x_{1-x}Gax_xSe2_2 (CIGS)-Technologie ein Leistungsgewinn von über 1 % im Ertrag für einige geografische Standorte und gleichzeitig eine Materialeinsparung für die Metallisierungs- und TCO-Schicht von bis zu 50 % errechnet. Mit Hilfe der numerischen Simulationen dieser Arbeit können alle denkbaren technologischen Verbesserungen auf Modulebene in das Modell eingebracht werden. Auf diese Weise wurde das aktuelle technologische Limit für CIGS-Dünnschicht-Solarmodule berechnet. Unter Verwendung der Randbedingungen der derzeit verfügbaren Materialien, Technologie- und Fertigungstoleranzen und des derzeit besten in der Literatur veröffentlichten CIGS-Materials ergibt sich ein theoretisches Wirkungsgradmaximum von 24 % auf Modulebene. Das derzeit beste veröffentlichte Modul mit den gegebenen Restriktionen weist einen Wirkungsgrad von 19,2 % auf [1]. Verbessert sich der CIGS-Absorber vergleichbar mit jenem von Galliumarsenid (GaAs) im Hinblick auf dessen Rekombinationsrate, ergibt sich ein erhöhtes Wirkungsgradlimit von etwa 28 %. Im Falle eines idealen CIGS-Absorbers ohne intrinsische Rekombinationsverluste wird in dieser Arbeit eine maximale Effizienzobergrenze von 29 % berechnet

    Torus knot filtered embedded contact homology of the tight contact 3-sphere

    Full text link
    Knot filtered embedded contact homology was first introduced by Hutchings in 2015; it has been computed for the standard transverse unknot in irrational ellipsoids by Hutchings and for the Hopf link in lens spaces L(n,n-1) via a quotient by Weiler. While straightforward toric constructions can be used to understand the ECH chain complexes of open books along the unknot and Hopf link, they do not readily adapt to general torus knots and links. In this paper, we generalize the definition and invariance of knot filtered embedded contact homology to allow for degenerate knots with rational rotation numbers. We then develop new methods for understanding the embedded contact homology chain complex of positive torus knotted fibrations of the standard tight contact 3-sphere in terms of their presentation as open books and as Seifert fibered spaces. We provide Morse-Bott methods, using a doubly filtered complex and the energy filtered perturbed Seiberg-Witten theory developed by Hutchings and Taubes, and use them to compute the T(2,q) knot filtered embedded contact homology, for q odd and positive. In the sequel we complete the computation for positive T(p,q) knots (where there is a nonvanishing differential) and use our results to deduce quantitative existence results for torus knotted Reeb dynamics on the tight 3-sphere and the mean action of area preserving diffeomorphisms of once punctured surfaces of arbitrary genus arising as Seifert surfaces of positive torus knots.Comment: 85 pages, arXiv insists the primary is GT rather than S
    corecore